Remarks on nonoscillation theorems for a second order nonlinear differential equation
HTML articles powered by AMS MathViewer
- by James S. W. Wong
- Proc. Amer. Math. Soc. 83 (1981), 541-546
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627687-0
- PDF | Request permission
Abstract:
This paper proves two results concerning nonoscillation of solutions of the second order nonlinear differential equation (†) \[ y + a(t){\left | y \right |^\gamma }\;\operatorname {sgn} y = 0,\quad \gamma > 0,\] where $a(t)$ is positive, continuous and locally of bounded variation, and sgn $y$ denotes the sign of the function $y(t)$. Assume also that $a(t)$ satisfies $\smallint _0^\infty {a^{ - 1}}(s)\;d{a_ + }(s) < \infty$. The main results are Theorem A. Let $0 < \gamma < 1$. If ${\lim _{t \to \infty }}{t^2}a(t) = 0$, then (†) is nonoscillatory. Theorem B. Let $\gamma > 1$. If ${\lim _{t \to \infty }}{t^{\gamma + 1}}a(t) = 0$, then (†) is nonoscillatory.References
- F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643–647. MR 72316 M. Bôcher, The theorems of oscillation of Sturm and Klein. I, II, Bull. Amer. Math. Soc. 4 (1897/8), 295-313; 365-376.
- C. V. Coffman and D. F. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. 71 (1967), 385–392. MR 227494, DOI 10.1007/BF01295129
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399–434. MR 296413, DOI 10.1090/S0002-9947-1972-0296413-9
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119–130. MR 333337
- H. E. Gollwitzer, Nonoscillation theorems for a nonlinear differential equation, Proc. Amer. Math. Soc. 26 (1970), 78–84. MR 259243, DOI 10.1090/S0002-9939-1970-0259243-3
- J. W. Heidel, A nonoscillation theorem for a nonlinear second order differential equation, Proc. Amer. Math. Soc. 22 (1969), 485–488. MR 248396, DOI 10.1090/S0002-9939-1969-0248396-0
- D. V. Izjumova and I. T. Kiguradze, Some remarks on the solutions of the equation $u^{n}+a(t)f(u)=0$, Differencial′nye Uravnenija 4 (1968), 589–605 (Russian). MR 0227544
- Adolf Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), no. 3, 409–435 (German). MR 1510784, DOI 10.1007/BF01444165
- Walter Leighton, On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37–47. MR 46506, DOI 10.1112/jlms/s1-27.1.37
- James S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339–360. MR 367368, DOI 10.1137/1017036
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 541-546
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627687-0
- MathSciNet review: 627687