Monotonicity theorems
HTML articles powered by AMS MathViewer
- by B. S. Thomson
- Proc. Amer. Math. Soc. 83 (1981), 547-552
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627688-2
- PDF | Request permission
Abstract:
A generalization of the extreme derivates of a function is given and used to prove several monotonicity theorems.References
- Andrew M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR 507448
- Andrew Bruckner, Current trends in differentiation theory, Real Anal. Exchange 5 (1979/80), no. 1, 9–60. MR 557963
- Casper Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960), 962–966. MR 118792, DOI 10.1090/S0002-9939-1960-0118792-2
- Ralph Henstock, $N$-variation and $N$-variational integrals of set functions, Proc. London Math. Soc. (3) 11 (1961), 109–133. MR 123671, DOI 10.1112/plms/s3-11.1.109 —, Linear analysis, Butterworth, London, 1968.
- J. McGrotty, A theorem on complete sets, J. London Math. Soc. 37 (1962), 338–340. MR 140635, DOI 10.1112/jlms/s1-37.1.338
- R. J. O’Malley, Selective derivates, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 1-2, 77–97. MR 437690, DOI 10.1007/BF01896470 S. Saks, Theory of the integral, PWN, Warsaw, 1937.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 547-552
- MSC: Primary 26A48; Secondary 28A15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627688-2
- MathSciNet review: 627688