FUNCTIONS WHICH OPERATE ON THE REAL PART OF
A FUNCTION ALGEBRA

OSAMU HATORI

Abstract. Recently S. J. Sidney [5] has shown that a "highly nonaffine" function h
on an interval cannot operate by composition on the real part of a nontrivial
function algebra. In this paper, we obtain the general result by considering the case
in which h is not "highly nonaffine".

1. Introduction. Let A be a function algebra on a compact Hausdorff space X
and h a nonaffine function on an interval I. We say that h operates by composition
on Re A if h ◦ u ∈ Re A whenever u ∈ Re A has range in I. We consider a
conjecture: If h operates by composition on Re A, then we have A = C(X). The
theorem of J. Wermer [7] is equivalent to the conjecture for h(t) = t^2. A. Bernard
[1] proved the conjecture for h(t) = |t|. S. J. Sidney [5] obtained results for the
cases that h is "highly nonaffine" or continuously differentiable. Our purpose is to
show the following theorem.

Theorem. Suppose that A is a function algebra on a compact Hausdorff space X
and that h is a nonaffine continuous function on an interval I. If h operates by
composition on Re A, then we have A = C(X).

If h is nonaffine on every nondegenerate subinterval of I, then h is "highly
nonaffine". So without loss of generality we may assume that I = [-1, 1], h = 0 on
[-1, 0] and h is not affine on any open subinterval of I containing 0.

Re A is a Banach space with the usual quotient norm

\[N(u) = \inf\{ \|f\| : f \in A, \text{Re } f = u \}. \]

We denote f|F the restriction of a function f ∈ C(X) to a subset F ⊆ X. For
nonempty disjoint compact subsets F_1 and F_2 of X we denote

\[(\text{Re } A)_1 = \{ u ∈ C_R(F_1) : \exists \hat{u} ∈ \text{Re } A, \hat{u}|F_1 = u \}, \]

\[(\text{Re } A)_2 = \{ u ∈ C_R(F_1) : \exists \hat{u} ∈ \text{Re } A, \hat{u}|F_1 = u, \hat{u}|F_2 = 0 \}. \]

For u ∈ (Re A)_1, we define

\[N_1(u) = \inf\{ N(\hat{u}) : \hat{u} ∈ \text{Re } A, \hat{u}|F_1 = u \}. \]

For u ∈ (Re A)_2, we define

\[N_2(u) = \inf\{ N(\hat{u}) : \hat{u} ∈ \text{Re } A, \hat{u}|F_1 = u, \hat{u}|F_2 = 0 \}. \]
Then $(\text{Re} \ A)_1$ and $(\text{Re} \ A)_2^2$ are complete with respect to the norms $N_1(\cdot)$ and $N_2^2(\cdot)$, respectively.

2. Lemmas. Let x be a point of X. We say that the function h operates weak-boundedly at x if there exist a $\delta > 0$, an $\epsilon > 0$, a compact neighborhood F_x of x, and a compact subset F_0 of X, which is disjoint from F_x, with the following property: $h \circ u \in (\text{Re} \ A)_x$ and $N_x(h \circ u) < \epsilon$ for each $u \in (\text{Re} \ A)^0_x$ with $N_x(u) < \delta$.

Lemma 1. Suppose that h operates by composition on $\text{Re} \ A$. Then h operates weak-boundedly at each point of X except for at most finitely many points.

Proof. Suppose that the lemma fails. Then there exists a countable subset $\{x_n\}$ of X with the following two properties: (1) Each x_n has a compact neighborhood F_n such that $(\text{Cl}(\bigcup_{k\neq n} F_k)) \cap F_n = \emptyset$ for each positive integer n. (2) h does not operate weak-boundedly at each point x_n. Let $F_{m(n)}$ denote $\text{Cl}(\bigcup_{k\neq n} F_k)$ for each n. $(m(n)$ is the index depending on $n).$ Since h does not operate weak-boundedly at x_n, there exists a $u_n \in (\text{Re} A)_{m(n)}$ such that $N^{m(n)}(u_n) < 1/2^n$ and $N_n(h \circ u_n) > n$ for each n. There exists a $\hat{u} \in \text{Re} A$ such that $\hat{u}_n|F_n = u_n$, $\hat{u}_n|F_{m(n)} = 0$ and $N(\hat{u}_n) < 1/2^n$ for each n. So $\sum_{n=1}^{\infty} u_n = \hat{u} \in \text{Re} A$ and $h \circ \hat{u} \in \text{Re} A$ and $\hat{u}|F_n = u_n$ for each n. Thus $N(h \circ \hat{u}) > N_n((h \circ \hat{u})|F_n) = N_n(h \circ u_n) > n$ for each n. This contradicts $h \circ \hat{u} \in \text{Re} A$.

Lemma 2. Let F_0 and F_1 be nonempty disjoint compact subsets of X. Then $(\text{Re} A)_0^1$ is an ultraseparating Banach function space with respect to the norm $N_0^1(\cdot)$.

Proof. For each $p \in \beta(N \times F_0)$ the functional $u \mapsto \tilde{u}(p)$ on $C_R(F_0)$ is linear and multiplicative, so there is a unique $x_p \in F_0$ such that $\tilde{u}(p) = u(x_p)$ for all $u \in C_R(X)$. (where $u_n = u$ for all n.) Let us take $p, q \in \beta(N \times F_0)$ and $p \neq q$. We shall find $g \in \ell^\infty(N, \text{Re} A)$ such that $g(x) = 0$ for $x \in \beta(N \times F_1)$ and $g(p) \neq g(q)$. We consider the following three cases:

1. $x_p \neq x_q$.
2. $x_p = x_q$, $f(q)$ whenever $f \in \ell^\infty(N, \text{Re} A)$ vanishes on $N \times \{x_p\}$.
3. $x_p = x_q$, there exists an $\tilde{f} \in \ell^\infty(N, \text{Re} A)$ such that \tilde{f} vanishes on $N \times \{x_p\}$ and $(\tilde{f}(p) \neq \tilde{f}(q))$.

Case (1). Since $\text{Re} A$ is uniformly dense in $C_R(X)$, there exists an $f \in \text{Re} A$ such that $-1 < f(x_p) < 0$, $f(F_1) \subset [-1, 0]$ and $f(x_q) \notin h^{-1}(0)$. Then $g = \tilde{h} \circ \tilde{f} = (h \circ \tilde{f}(x_p)$ where $u_n = h \circ f$ for all n) is the desired function.

Case (2). $\text{Re} A$ is dense in $C_R(X)$ and $h = 0$ on $[-1, 0]$, so there exists a $u \in \text{Re} A$ such that $u(F_0) = 1$ and $u(F_1) = 0$. Since $\text{Re} A$ is ultraseparating, there exists a $G \in \ell^\infty(N, \text{Re} A)$ which separates p and q. For each n let c_n denote $G(n, x_p)$. Then $g = (c_n u)$ is the desired function.

Case (3). Without loss of generality we may assume that $\tilde{f}(p) > 0$. Put $a = \sup\{\tilde{f}(x): x \in \beta(N \times F_1)\}$. Let $\tilde{w} = \tilde{f} - (a + 1)\tilde{u}$, where $u \in \text{Re} A$ is 0 on F_0 and 1 on F_1. Then $\tilde{w}(\beta(N \times F_1)) < 0$, $\tilde{w}(N \times \{x_p\}) = 0$, $\tilde{w}(p) > 0$ and $\tilde{w}(p) \neq \tilde{w}(q)$. Let $D = \{u \in \text{Re} A: u(x_p) = 0, u(F_1) \subset [-1, 0], -1 < u < 1\}$. For each n let $D_n = \{u \in D: N(h \circ u) < n\}$. Then D is closed in $\text{Re} A$ and $D = \bigcup_{n=1}^{\infty} D_n$. So by the Baire category theorem, the closure of some D_n has nonempty interior in D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Thus there are a \(u_0 \in D \), a positive integer \(r \), and an \(\epsilon > 0 \) such that \(U \cap D_r \) is dense in \(U \). Let \(U \neq \emptyset \) where \(U = \{ u \in \text{Re} A : N(u - u_0) < \epsilon \} \). We may assume that
\[-1 < u_0 < 1 \text{ and } u_0(F_x) \subset (-1, 0). \]

Let \(W_x = \{ \tilde{u} = (u_n) \in l^\infty(N, \text{Re} A) : u_n \in D, \sup_n N(u_n - u) < \epsilon \} \). Then \(h \circ \tilde{u} \in \text{Cl}(l^\infty(N, \text{Re} A)) \) (the uniform closure of \(l^\infty(N, \text{Re} A) \) in \(C_R(\beta(N \times X)) \)) whenever \(\tilde{u} \in W_x \). For an appropriately small number \(t > 0 \), we have \(\tilde{u}_0 + t\tilde{w} \in W_x \). \(h \circ (\tilde{u}_0 + t\tilde{w})(p) = h \circ (t\tilde{w})(p) = h \circ (t\tilde{w})(q) \) and \(-1 < \tilde{u}_0 + t\tilde{w} < 0 \) on \(\beta(N \times F_1) \). There exists a sequence \(\{ v_k \} \) in \(l^\infty(N, \text{Re} A) \), where \(v^k = (v^k_n) \quad (v^k_n \in D_r \cap U) \), such that \(v^k \to \tilde{u}_0 + t\tilde{w} \) uniformly on \(\beta(N \times X) \) as \(k \to \infty \). For sufficiently large \(k \), we obtain that \(h \circ v^k(p) \neq h \circ v^k(q) \) and that \(h \circ v^k \) vanishes on \(\beta(N \times F_1) \). This function \(h \circ v^k \) is the desired function.

3. Proof of the theorem. Suppose that \(h \) operates weak-boundedly at \(x \) i.e., there exist an \(\epsilon > 0 \), a \(\delta > 0 \), a compact neighborhood \(F_x \) of \(x \) and a nonempty compact subset \(F_0 \) of \(X \) such that \(F_0 \cap F_x = \emptyset \) and \(h \circ u \in (\text{Re} A)_x \) and \(N_x(h \circ u) < \epsilon \) whenever \(u \in (\text{Re} A)_x^0 \) with \(N_x^0(u) < \delta \). Suppose that it follows that \(F_x \) is an interpolation set for \(A \). Then each point of \(X \), with finitely many exceptions, has a compact neighborhood which is an interpolation set for \(A \) by Lemma 1. Then we get \(A = C(X) \). So it is sufficient to prove that \(F_x \) is an interpolation set for \(A \).

Let \(V \) denote \(\text{Cl}(l^\infty(N, (\text{Re} A)_x)) \). We construct an algebra contained in \(V \) which contains the constants and separates the points of \(\beta(N \times F_x) \). Then the Stone-Weierstrass theorem will imply that \(V = C_R(\beta(N \times F_x)) \) and by Bernard’s lemma [1] \((\text{Re} A)_x = C_R(F_x) \) so \(A|F_x = C(F_x) \) by the theorem of Sidney and Stout [6].

Let \(\tilde{u}_1 = (u_1^1), \tilde{u}_2 = (u_2^2), \tilde{u}_3 = (u_3^3), \ldots, \tilde{u}_m = (u_m^m) \) be in \(l^\infty(N, (\text{Re} A)_x^0) \). For sufficiently small \(\Delta \), let \(\lambda_\Delta \) be a nonnegative \(n \)-times continuously differentiable function supported in \((-\Delta, \Delta) \) and with integral 1. Let \(\phi_\Delta \) denote the convolution
\[
\phi_\Delta(x) = \int_{-\Delta}^{\Delta} h(x - t)\lambda_\Delta(t)dt,
\]
where \(\phi_\Delta \) is \(n \)-times continuously differentiable and converges uniformly to \(h \) on any compact subinterval of \((-1, 1) \) as \(\Delta \) tends to 0.

There exist an \(s_0 \in (-\delta/2, \delta/2) \) and a \(\Delta < \delta/2 \) such that \(\phi_\Delta^{(m)}(s_0) \neq 0 \). For if \(\phi_\Delta^{(m)} = 0 \) on \((-\delta/2, \delta/2) \) for each small \(\gamma \), then \(\phi_\Delta \) is a polynomial of degree at most \(m - 1 \) so \(h \) is also a polynomial of degree at most \(m - 1 \) on \((-\delta/2, \delta/2) \), which is a contradiction. For sufficiently small \(s_1, s_2, s_3, \ldots, s_m \), we have
\[
h \circ (s_0 + s_1u_1^1 + s_2u_2^2 + s_3u_3^3 + \cdots + s_mu_m^m - t) \in (\text{Re} A)_x
\]
and
\[
N_x(h \circ (s_0 + s_1u_1^1 + s_2u_2^2 + s_3u_3^3 + \cdots + s_mu_m^m - t)) < \epsilon
\]
for each \(n \) whenever \(|t| < \Delta \). Thus
\[
h \circ (s_0 + s_1\tilde{u}_1 + s_2\tilde{u}_2 + s_3\tilde{u}_3 + \cdots + s_m\tilde{u}_m - t) \in V
\]
if \(|t| < \Delta \), so
\[
\phi_\Delta \circ (s_0 + s_1\tilde{u}_1 + s_2\tilde{u}_2 + s_3\tilde{u}_3 + \cdots + s_m\tilde{u}_m) \in V.
\]
In particular fixing s_2, s_3, \ldots, s_m and varying s_1 gives

$$\phi_\Delta \circ (s_0 + s_2\check{u}_2 + s_3\check{u}_3 + \cdots + s_m\check{u}_m) \in V$$

hence

$$\{\phi_\Delta \circ (s_0 + s_1\check{u}_1 + s_2\check{u}_2 + \cdots + s_m\check{u}_m)$$

$$-\phi_\Delta \circ (s_0 + s_2\check{u}_2 + \cdots + s_m\check{u}_m)\}/s_1 \in V$$

if s_1 is small and nonzero, and letting $s_1 \to 0$,

$$\phi_\Delta' \circ (s_0 + s_2\check{u}_2 + \cdots + s_m\check{u}_m)\check{u}_1 \in V$$

for small enough s_2, s_3, \ldots, s_m. Continuing in this manner, in m stages we get

$$\phi_\Delta^{(m)}(s_0)\check{u}_1 \cdot \check{u}_2 \cdot \check{u}_3 \cdot \cdots \cdot \check{u}_m \in V.$$

Therefore the algebra generated by $l^\infty(N, (\Re A)^0)$ separates the points of $\beta(N \times F_x)$, hence this algebra is the desired algebra.

The author wishes to thank Professor Junzo Wada for helpful discussions and for his constant encouragement.

REFERENCES