CURVATURE ESTIMATES FOR COMPLETE AND BOUNDED SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD

YOSHIHISA KITAGAWA

ABSTRACT. Let \mathcal{M} be a complete n-dimensional submanifold in the $(2n-1)$-dimensional Euclidean space, with scalar curvature bounded from below. Baikousis and Koufogiorgos proved that the sectional curvature of \mathcal{M} satisfies $\sup K_M > \lambda^{-2}$ if \mathcal{M} is contained in a ball of radius λ. We extend this result to the case that the ambient space is a complete simply connected Riemannian manifold of nonpositive curvature.

1. Introduction. For $p < n$, let \mathcal{M} be a complete n-dimensional Riemannian submanifold in the $(n+p)$-dimensional Euclidean space E^{n+p}. Under the assumption that the scalar curvature of \mathcal{M} has a lower bound, Baikousis and Koufogiorgos [1] proved that if \mathcal{M} is contained in a ball of radius λ, then the sectional curvature K_M of \mathcal{M} satisfies $\sup K_M > \lambda^{-2}$. In this note we obtain a natural extension of the above inequality when the ambient space is a complete simply connected $(n+p)$-dimensional Riemannian manifold of nonpositive curvature. To state our result, we introduce a continuous function f: $[0, \infty) \to [1, \infty)$ by

$$f(t) = \begin{cases} 1 & \text{if } t = 0, \\ t \coth(t) & \text{if } t > 0. \end{cases}$$

THEOREM. For $p < n$, let \mathcal{M} be a complete n-dimensional Riemannian submanifold in a $(n+p)$-dimensional complete simply connected Riemannian manifold $\overline{\mathcal{M}}$ whose sectional curvature satisfies $a < K_{\overline{\mathcal{M}}} < b < 0$. If \mathcal{M} is contained in a geodesic ball of radius λ and the scalar curvature of \mathcal{M} has a lower bound, then the sectional curvature K_M of \mathcal{M} satisfies $\sup K_M > a + \lambda^{-2}\{f(\sqrt{-b\lambda})\}^2$.

The author sincerely thanks Professor S. Tanno for valuable suggestions.

2. Proof of Theorem. We denote the Riemannian metric on $\overline{\mathcal{M}}$ (resp. \mathcal{M}) by $\langle \cdot, \cdot \rangle$ (resp. $\langle \cdot, \cdot \rangle$), the Riemannian connection by ∇ (resp. ∇), the Riemannian curvature tensor by \mathcal{R} (resp. \mathcal{R}) and the second fundamental form with respect to the immersion $\mathcal{M} \subset \overline{\mathcal{M}}$ by a.

Since the scalar curvature of \mathcal{M} has a lower bound, we may assume $\inf K_M > -\infty$. Let d be the distance function on $\overline{\mathcal{M}}$ and choose a point $\bar{\mathcal{O}} \in \overline{\mathcal{M}}$ such that $d(\bar{\mathcal{O}}, x) < \lambda$ for all $x \in \mathcal{M}$. We define a smooth function F: $\mathcal{M} \to R$ by $F(x) = \{d(\bar{\mathcal{O}}, x)\}^2/2$. Then by [4, Theorem A'] there exists a sequence $(x_k)_{k=1}^\infty$ in \mathcal{M} such that $\|\text{grad } F(x_k)\| < k^{-1}$.

Received by the editors December 4, 1980.
1980 Mathematics Subject Classification. Primary 53C40; Secondary 53C20.

© 1981 American Mathematical Society
0002-9939/81/0000-0531/$01.75

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[\nabla^2 F(X, X) < k^{-1} \] for all unit vectors \(X \in T_xM \),

\[\lim_{k \to \infty} F(x_k) = \sup F, \]

where \(\nabla^2 F \) denotes the Hessian of \(F \) with respect to the Riemannian metric on \(M \).

Lemma 1. Let \(\gamma: [0, 1] \to \bar{M} \) be a geodesic in \(\bar{M} \) such that \(\gamma(0) = \bar{o} \) and \(\gamma(1) \in M \). Then

\[\nabla^2 F(X, X) > \langle \alpha(X, X), \dot{\gamma}(1) \rangle + L^{-2} \langle X, \dot{\gamma}(1) \rangle^2 \]

\[+ \left(\|X\|^2 - L^{-2} \langle X, \dot{\gamma}(1) \rangle^2 \right) f(\sqrt{-b} L), \]

for all vectors \(X \) tangent to \(M \) at \(\gamma(1) \), where \(L \) is the length of \(\gamma \).

Proof. Let \(c(s) \) be the geodesic in \(M \) such that \(c(0) = X \) and let \(\gamma_s: [0, 1] \to \bar{M} \) be the geodesic such that \(\gamma_s(0) = \bar{o} \) and \(\gamma_s(1) = c(s) \). Then we have \(\nabla^2 F(X, X) = F(c(s))\vert_{s=0}' = E(\gamma_s)\vert_{s=0}' \), where \(E(\gamma_s) \) is the energy of \(\gamma_s \) defined by \(E(\gamma_s) = \int_0^1 \langle \dot{\gamma}_s, \dot{\gamma}_s \rangle/2 \). Let \(V \) be the variation vector field along \(\gamma \) with respect to the variation \(\{\gamma_s\} \). Then a calculation shows that

\[E(\gamma_s)'\vert_{s=0} = \langle \alpha(X, X), \dot{\gamma}(1) \rangle + I(V, V), \]

where \(I(V, V) = \int_0^1 \left(\langle \nabla^2 \gamma V, \nabla^2 \gamma V \rangle + \langle \nabla^2 \dot{\gamma}, \nabla^2 \dot{\gamma} \rangle \right) \). Let \(\bar{M} \) be the \((n + p)\)-dimensional space form with constant curvature \(b \) and let \(\sigma: [0, 1] \to \bar{M} \) be a geodesic with length \(L \). We construct a vector field \(W \) along \(\sigma \) such that \(\|V\| = \|\nabla^2 \gamma W\| = \|\nabla^2 \dot{\gamma} W\| \) and \(\langle V, \dot{\gamma} \rangle = \langle W, \dot{\gamma} \rangle \), where \(\nabla \) is the Riemannian connection with respect to the Riemannian metric \(\langle \cdot, \cdot \rangle \) on \(\bar{M} \). Then \(K_{\bar{M}} < b \) implies \(I(V, V) > I(W, W) \). Let \(J \) be the Jacobi field along \(\sigma \) determined by \(J(0) = 0 \) and \(J(1) = W(1) \). Then [2, First lemma, p. 24] implies \(I(W, W) > I(J, J) \). Let \(U \) be the parallel vector field along \(\sigma \) determined by \(U(1) = J(1) - L^{-2} \langle J(1), \dot{\gamma}(1) \rangle \dot{\gamma}(1) \), and let \(g: [0, 1] \to R \) be the solution of \(g'' + bL^2g = 0 \) determined by \(g(0) = 0 \) and \(g(1) = 1 \). Then we have \(J(t) = g(t)U(t) + \{L^{-2}J(1), \dot{\gamma}(1) \dot{\gamma}(1) \} \dot{\gamma}(1) \) and \(g'(1) = f(\sqrt{-b} L) \). Hence we see that \(I(J, J) = \langle \nabla^2 \dot{\gamma} J, J \rangle\vert_{s=1} = g'(1)\|U(1)\|^2 + L^{-2} \langle J(1), \dot{\gamma}(1) \rangle^2 = f(\sqrt{-b} L)\|X\|^2 - L^{-2} \langle X, \dot{\gamma}(1) \rangle^2 + \sqrt{-b} \langle X, \dot{\gamma}(1) \rangle^2 \). Q.E.D.

Let \(\gamma_k: [0, 1] \to \bar{M} \) be the geodesic such that \(\gamma_k(0) = \bar{o} \) and \(\gamma_k(1) = x_k \), and let \(\lambda_k \) be the length of \(\gamma_k \). We set \(\lambda_\infty = \sup \{d(\bar{o}, x) | x \in M \} \), then (4) implies \(\lim_{k \to \infty} \lambda_k = \lambda_\infty > 0 \). Therefore we may assume \(\lambda_k > 0 \) for all \(k \). Let \(X \) be a unit vector in \(T_xM \). Then by (3) and Lemma 1 we have

\[k^{-1} \langle \alpha(X, X), \dot{\gamma}_k(1) \rangle - \lambda_k^2 \langle X, \dot{\gamma}_k(1) \rangle^2 \{ f(\sqrt{-b} \lambda_k) - 1 \} + f(\sqrt{-b} \lambda_k). \]

Since \(\langle X, \dot{\gamma}_k(1) \rangle = \langle X, \text{grad} F(x_k) \rangle \), (2) implies \(\langle X, \dot{\gamma}_k(1) \rangle^2 < k^{-2} \). Hence we have

\[\| \alpha(X, X) \| \geq \left\{ f(\sqrt{-b} \lambda_k) - A_k \right\} / \lambda_k \]

for all unit vectors \(X \in T_xM \), where \(A_k = k^{-1} + k^{-2} \lambda_k^2 \{ f(\sqrt{-b} \lambda_k) - 1 \} \). Since \(\lim_{k \to \infty} \{ f(\sqrt{-b} \lambda_k) - A_k \} = f(\sqrt{-b} \lambda_\infty) > 1 \), we may assume \(f(\sqrt{-b} \lambda_k) - A_k > 0 \) for all \(k \). Hence (5) implies \(\alpha(X, X) \neq 0 \) for all nonzero vectors \(X \in T_xM \). Now we recall the following lemma [3, p. 28].

Lemma 2. Let \(\alpha: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^p \) be symmetric bilinear and satisfy \(\alpha(X, X) \neq 0 \) for all nonzero \(X \in \mathbb{R}^n \). If \(p < n \), there exist linearly independent vectors \(X, Y \in \mathbb{R}^n \) such that \(\alpha(X, Y) = 0, \alpha(X, X) = \alpha(Y, Y) \).
By Lemma 2 there exist linearly independent vectors X_k, Y_k in $T_{x_k}M$ such that $\alpha(X_k, Y_k) = 0$, $\alpha(X_k, X_k) = \alpha(Y_k, Y_k)$. Hence by the Gauss equation, we have

$$\langle R(X_k, Y_k)Y_k, X_k \rangle = \langle R(X_k, Y_k)Y_k, X_k \rangle + \|\alpha(X_k, X_k)\| \cdot \|\alpha(Y_k, Y_k)\|.$$

Let $K(X_k, Y_k)$ (resp. $K(X_k, Y_k)$) be the sectional curvature of M (resp. M) for the plane spanned by X_k and Y_k. Then by (5) we see that

$$K(X_k, Y_k) = \overline{K}(X_k, Y_k) + \|\alpha(X_k, X_k)\| \cdot \|\alpha(Y_k, Y_k)\| \cdot \|X_k\|^2 \|Y_k\|^2$$

$$> a + \|\alpha(X_k, X_k)\| \cdot \|\alpha(Y_k, Y_k)\| \cdot \|X_k\|^2 \|Y_k\|^2$$

$$> a + \lambda_k^{-2}\{f(\sqrt{-b} \lambda_k) - A_k\}^2.$$

Letting k go to infinity, we have $\sup K_M > a + \lambda^{-2}\{f(\sqrt{-b} \lambda)\}^2$. Since $\lambda_{\infty} < \lambda$ and the function $t \mapsto t^{-2}\{f(\sqrt{-b} t)\}^2$ is decreasing, we have $\sup K_M > a + \lambda^{-2}\{f(\sqrt{-b} \lambda)\}^2$. This completes the proof of the theorem.

REFERENCES

Mathematical Institute, Tohoku University, Sendai, 980 Japan