Curvature estimates for complete and bounded submanifolds in a Riemannian manifold
HTML articles powered by AMS MathViewer
- by Yoshihisa Kitagawa
- Proc. Amer. Math. Soc. 83 (1981), 579-581
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627696-1
- PDF | Request permission
Abstract:
Let $M$ be a complete $n$-dimensional submanifold in the $(2n - 1)$-dimensional Euclidean space, with scalar curvature bounded from below. Baikousis and Koufogiorgos proved that the sectional curvature of $M$ satisfies sup ${K_M} \geqslant {\lambda ^{ - 2}}$ if $M$ is contained in a ball of radius $\lambda$. We extend this result to the case that the ambient space is a complete simply connected Riemannian manifold of nonpositive curvature.References
- Christos Baikousis and Themis Koufogiorgos, Isometric immersions of complete Riemannian manifolds into Euclidean space, Proc. Amer. Math. Soc. 79 (1980), no. 1, 87–88. MR 560590, DOI 10.1090/S0002-9939-1980-0560590-2
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Hideki Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205–214. MR 215259, DOI 10.2969/jmsj/01920205
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 579-581
- MSC: Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627696-1
- MathSciNet review: 627696