Additive comparisons of stop rule and supremum expectations of uniformly bounded independent random variables
HTML articles powered by AMS MathViewer
- by T. P. Hill and Robert P. Kertz
- Proc. Amer. Math. Soc. 83 (1981), 582-585
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627697-3
- PDF | Request permission
Abstract:
Let ${X_1},{X_2}, \ldots$ be independent random variables taking values in [$[a,b]$], and let $T$ denote the stop rules for ${X_1},{X_2}, \ldots$. Then $E({\sup _{n \geqslant 1}}{X_n}) - \sup \{ E{X_t}:t \in T\} \leqslant (1/4)(b - a)$, and this bound is best possible. Probabilistically, this says that if a prophet (player with complete foresight) makes a side payment of $(b - a)/8$ to a gambler (player using nonanticipating stop rules), the game becomes at least fair for the gambler.References
- Y. S. Chow, Herbert Robbins, and David Siegmund, Great expectations: the theory of optimal stopping, Houghton Mifflin Co., Boston, Mass., 1971. MR 0331675
- Theodore P. Hill and Robert P. Kertz, Ratio comparisons of supremum and stop rule expectations, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 2, 283–285. MR 618276, DOI 10.1007/BF00535745
- Ulrich Krengel and Louis Sucheston, Semiamarts and finite values, Bull. Amer. Math. Soc. 83 (1977), no. 4, 745–747. MR 436314, DOI 10.1090/S0002-9904-1977-14378-4
- Ulrich Krengel and Louis Sucheston, On semiamarts, amarts, and processes with finite value, Probability on Banach spaces, Adv. Probab. Related Topics, vol. 4, Dekker, New York, 1978, pp. 197–266. MR 515432
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 582-585
- MSC: Primary 60G40
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627697-3
- MathSciNet review: 627697