AN EXAMPLE IN SHAPE THEORY

SMILKA ZDRAVKOVSKA

ABSTRACT. We give an example of a compactum which cannot be "improved" within its shape class so that its shape theory agrees with its homotopy theory.

1. Introduction. S. Ferry [2] has proved the following theorem: For every $UV(1)$ compactum X there is an "improved" compactum X' shape equivalent to X such that for every finite-dimensional compactum Z there is a one-to-one correspondence between the set of homotopy classes and the set of strong shape morphisms from Z to X'. Two questions arise concerning the hypotheses in that theorem:

(i) Is $UV(1)$ a necessary requirement; i.e. is there a compactum that cannot be improved?

(ii) Is the finite dimensionality of Z essential?

In this paper we give an example to answer in the affirmative the first question.

I have to thank Ross Geoghegan for introducing me to Ferry's work and for his interest and help. In particular, he communicated a version of the folk lemma given in the Appendix. The referee suggested the version he wanted to see published and expressed regret Chapman had not done so in 1970. I am grateful to the referee for changing the original example (so that one would not be misled by the size of π_1), the Hawaiian earring.

2. The example. Let X_n denote the wedge of a circle with n copies of the k-sphere S^k, $n > 0$, $k > 2$. Let X be the limit of the sequence $X_0 \leftarrow X_1 \leftarrow \cdots$ with bond $p^n_m: X_n \rightarrow X_m$ equal to the identity on S^1 and the first m copies of S^k, and sending the remaining $n - m$ copies of S^k to the basepoint. Note that X_n inherits a metric as a subset of $S^1 \vee B^{k+1} \subseteq S^1 \times B^{k+1}$, where B^{k+1} is the $(k + 1)$-dimensional ball.

THEOREM. For any compactum Y shape equivalent to X, the natural map

$$[S^k, Y] \rightarrow \{\text{strong shape morphisms from } S^k \text{ to } Y\},$$

is not surjective.

To get an idea of the proof, consider first the case $Y = X$. Let a_1, \ldots, a_n be the obvious generators of $\pi_k(X_n)$ as a module over $\pi_1(X_n) = \mathbb{Z}$ (i.e. a_i is represented by
a map that sends S^k by the identity to the ith copy of S^k in X_n). We choose a generator t of $\pi_1(X_n)$ and denote the action of t on $\pi_k(X_n)$ by $g \mapsto tg$. Any infinite word of the form

$$a = \sum_{i=1}^{\infty} (t^{k_i} + t^{-k_i})a_i,$$

with $k_i \to \infty$ as $i \to \infty$, determines a shape morphism $S^k \to X$ which cannot be represented by a map. Since there is a forgetful map from strong shape morphisms to shape morphisms, this suffices to prove the theorem.

Let A denote the set of all such a's. It is the size of A that makes the theorem true. For, given any finite subset $A' \subset A$, there is a compactum X' and a shape equivalence $h: X \to X'$ such that for every $a \in A'$, ha is representable by a map: just take X' to be the shape mapping cylinder of $\bigcup_{a \in A'} a: \bigcup_{a \in A'} S^k \to X$.

Proof of the theorem. Let Y be a compactum shape equivalent to X. It follows from the Appendix that there is a sequence of embeddings $j_n^{n+1}: X_{n+1} \times Q \to X_n \times Q$ ($Q =$ Hilbert cube) such that

$$Y = \lim_{\to} \left(X_0 \times Q \leftarrow X_1 \times Q \leftarrow \cdots \right) = \bigcap_{n=0}^{\infty} j_n^{n}(X_n \times Q)$$

and such that j_n^{n+1} is homotopic to $p_n^{n+1} \times \text{id}_Q$. The natural map from Y to $Y_n = X_n \times Q$ will be denoted by j_n.

If $\alpha: S^k \to Y$ is a map, then $j_0\alpha = j_0^n j_0\alpha: S^k \to Y_0 = S^1 \times Q$ is null-homotopic and lifts to the universal cover $R^1 \times Q$ of $S^1 \times Q$. We will construct a shape morphism $\omega: S^k \to Y$ such that if $\omega_n: S^k \to Y_n$ is any map representing the shape morphism $j_0\omega$, then the sequence $\text{diam}\ j_n\omega_n(S^k)$ is unbounded, where $j_0^n\omega_n$ is any lift of $j_0^n\omega_n$ to the universal cover $R^1 \times Q$ of $S^1 \times Q$. This shows that ω is not representable by a map.

Let \tilde{Y}_n denote the universal cover of Y_n. Note that $X_n \times Q = \tilde{X}_n \times Q$ has a metric which agrees locally with the metric on $X_n \times Q$, is invariant under covering translations, and agrees with the usual metric on $R^1 \times B^{k+1} \times Q$. In particular, if $f: A \to X_n$ is a map, then $\text{diam}\ \tilde{f}(A)$ is independent of the choice of the lifting $\tilde{f}: A \to \tilde{X}_n$ of f, provided A is path connected.

Lemma. If the map $f: X_n \times Q \to X_0 \times Q$ is such that

$$f_n: \pi_1(X_n \times Q) \to \pi_1(X_0 \times Q)$$

is an isomorphism, then for each $N > 0$ there exists an $M > 0$ such that if $A \subset \tilde{X}_n \times Q$ is a subset with $\text{diam}\ A > M$ and $\tilde{f}: \tilde{X}_n \times Q \to \tilde{X}_0 \times Q$ covers f, then $\text{diam}\ \tilde{f}(A) > N$.

Proof. This follows immediately from the fact that f is proper and from our choice of metrics.

We will now construct the desired shape morphism $\omega: S^k \to Y$. It will be determined by an infinite word of the form $\omega = \Sigma_{i=1}^{\infty} (t^{k_i} + t^{-k_i})a_i$. Each such word defines a shape morphism $\omega: S^k \to Y$ such that $j_n\omega$ is represented by $[\omega_n] = \Sigma_{i=1}^{\infty} (t^{k_i} + t^{-k_i})a_i$. Choose M_n as in the lemma above so that if $\text{diam}\ A > M_n$, then
diam \widehat{\alpha}_n(S^k) > n + 1. Pick \(k_n \) sufficiently large to guarantee that if \(\alpha_n: S^k \rightarrow X_n \times Q \) represents \([\omega_n]\), then \(\alpha_n: S^k \rightarrow \tilde{X}_n \times Q \) has diam \(\tilde{\alpha}_n(S^k) > M_n \). This can be done since diam \(\tilde{\alpha}_n(S^k) > 2k_n \). Thus, diam \(\widehat{\alpha}_n(S^k) > n + 1 \). Suppose there is a map \(\alpha: S^k \rightarrow Y \) representing the constructed shape morphism \(\omega \). We can set \(\alpha_n = j_n \alpha \) and conclude that

\[
\text{diam} \widehat{\alpha}_n(S^k) = \text{diam} \widehat{j_0\alpha_n(S^k)} = \text{diam} \widehat{j_0\alpha_n(S^k)} > n + 1,
\]

for each \(n \). This contradicts the compactness of \(S^k \) and completes the proof.

Appendix.

Lemma. Let \(A = \lim A_n \) with bonds \(p_n: A_n \rightarrow A_{n-1} \) and with each \(A_n \) a compact ANR. If \(X \) is a compactum shape equivalent to \(A \) then there is a sequence of embeddings \(j_{n+1}: A_{n+1} \times Q \rightarrow A_n \times Q \) such that \(X = \lim (A_n \times Q, j_n) = \bigcap_{n=1}^{\infty} j_i^*(A_n \times Q) \). Moreover, \(j_n \) is homotopic to \(p_n \times \text{id}_Q \).

Proof. If \(j: A \times Q \rightarrow Q \) is a Z-embedding, then \(j(A \times Q) = \bigcap_{i=1}^{\infty} M_i \), where each \(M_i \) is a \(Q \)-manifold neighborhood of \(A \times Q \) homeomorphic to \(A \times Q \) in such a way that the diagrams

\[
\begin{array}{ccc}
M_{i+1} & \rightarrow & M_i \\
\downarrow & & \downarrow \\
A_{i+1} \times Q & \xrightarrow{p_{i+1} \times \text{id}_Q} & A_i \times Q
\end{array}
\]

commute up to homotopy. This is well known. See [1], for example, for a proof.

Since \(A \times Q \) and \(X \) are shape equivalent, the proof of Chapman’s complement theorem [1] produces an isotopy \(f_t: Q \rightarrow Q \), \(0 < t < 1 \), such that \(f_t \) and \(f_t^{-1} \) are supported on smaller and smaller neighborhoods of \(A \times Q \) and \(X \), respectively. If \(\{t_i\} \) is a sequence of real numbers, \(0 < t_i < 1 \), converging rapidly to \(1 \), \(X = \bigcap_{i=1}^{\infty} f_{t_i}(M_i) \) and \(f_{t_i}|M_{i+1} \) is ambient isotopic to \(f_{t_{i+1}}|M_{i+1} \) in \(M_i \). This shows not only that neighborhoods of \(A \) are homeomorphic (simple homotopy equivalent) to neighborhoods of \(X \) but also that the homeomorphisms can be chosen coherently.

References

Department of Mathematics, University of Florida, Gainesville, Florida 32611

Current address: Mathematical Reviews, 611 Church Street, Ann Arbor, Michigan 48109