Universal bounds and monotonicity of ordinal invariants
HTML articles powered by AMS MathViewer
- by James R. Boone
- Proc. Amer. Math. Soc. 83 (1981), 641-644
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627711-5
- PDF | Request permission
Abstract:
The tightness of a topological space provides a universal bound for all ordinal invariants determined by weak topologies generated by collections of subsets. All ordinal invariants are monotonic decreasing for pseudo-open mappings.References
- A. Arhangel′skiĭ, Some types of factor mappings and the relations between classes of topological spaces, Dokl. Akad. Nauk SSSR 153 (1963), 743–746 (Russian). MR 0158362
- A. V. Arhangel′skiĭ and S. P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313–320; addendum, ibid. 15 (1968), 506. MR 0240767
- James R. Boone, Pseudo-open functions are monotonic decreasing for ordinal and cardinal invariants, General Topology Appl. 9 (1978), no. 3, 243–251. MR 510906, DOI 10.1016/0016-660x(78)90028-4
- James R. Boone, A note on linearly ordered net spaces, Pacific J. Math. 98 (1982), no. 1, 25–35. MR 644935 —, On the tightness of a topological space (submitted).
- James R. Boone, On open mappings, closed mappings, and ordinal invariants, Bull. Austral. Math. Soc. 19 (1978), no. 3, 325–328. MR 536884, DOI 10.1017/S000497270000887X
- James R. Boone, Sheldon W. Davis, and Gary Gruenhage, Cardinal functions for $k$-spaces, Proc. Amer. Math. Soc. 68 (1978), no. 3, 355–358. MR 467676, DOI 10.1090/S0002-9939-1978-0467676-2
- S. P. Franklin, Natural covers, Compositio Math. 21 (1969), 253–261. MR 250252
- I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts, No. 34, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg. MR 0340021
- J. E. Vaughan, Convergence, closed projections and compactness, Proc. Amer. Math. Soc. 51 (1975), 469–476. MR 370462, DOI 10.1090/S0002-9939-1975-0370462-2
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 641-644
- MSC: Primary 54D50; Secondary 54A25
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627711-5
- MathSciNet review: 627711