STIEFEL-WHITNEY CLASSES IN $H^* BO<\phi(r)>$

A. P. Bahri and M. E. Mahowald

Abstract. We determine the Stiefel-Whitney classes in $H^*(BO; \mathbb{Z}_2)$ which are mapped nontrivially by the homomorphism induced by the covering projection p: $BO<\phi(r)>
ightarrow BO$.

Let $\phi(r)$ be the function defined by $\phi(r) = 8a + 2b$ where $r = 4a + b$ with $0 < b < 3$ and let $BO<\phi(r)>$ be the $(\phi(r) - 1)$-connected covering of BO. It follows from Stong’s computation of $H^*(BO<\phi(r)>; \mathbb{Z}_2)$ in [4] that the covering map

$p: BO<\phi(r)>
ightarrow BO$

maps the Stiefel-Whitney classes $w_i \in H^*(BO; \mathbb{Z}_2)$ to generators in $\pi_*BO<\phi(r)>$. The remaining classes are mapped to decomposables. In this note we determine which Stiefel-Whitney classes are mapped to nonzero decomposables. In doing so we display a relationship between $H^*BO<\phi(r)>$ and the cohomology of certain spaces related to RP^∞.

Let A denote the mod 2 Steenrod algebra and A_r the subalgebra generated by $Sq^1, Sq^2, Sq^4, \ldots, Sq^{2^r}$. Let $P = \mathbb{Z}_2[x, x^{-1}]$ be the ring of Laurent polynomials in one variable x of degree +1, made into a module over A by setting

$Sq^i x^j = \frac{j(j - 1) \cdots (j - i + 1)}{1 \cdot 2 \cdots i} x^{i+j}$.

Let F_{-2r} denote the A_r-submodule of P generated by x^j with $j < -2$.

Theorem A. The class p^*w_n is nonzero in $H^*BO<\phi(r)>$ if and only if $\Sigma P/F_{-2r}$ is nonzero in dimension n. The Poincaré series for $\Sigma P/F_{-2r}$ is

$$\frac{1}{1 - \sum_{i=1}^{\infty} (1 + i^r)(1 + i^{3^{i-1}}) \cdots (1 + i^{(2^{i-1})^2})(1 + i^{2^{i-1}})}.$$

The theorem is a consequence of the following two lemmas and the fact (from [2]) that as \mathbb{Z}_2-vector spaces

$$\Sigma P/F_{-2r} \cong \bigoplus_{j=0}^{2^r} \Sigma^j(A_r \otimes_{A_{r-1}} \mathbb{Z}_2).$$

Lemma 1. The class p^*w_n is nonzero in $H^*BO<\phi(r)>$ if and only if $A \otimes_{A_{r-1}} \mathbb{Z}_2$ is nonzero in dimension n.

Lemma 2. $A \otimes_{A_{r-1}} \mathbb{Z}_2$ and $\bigoplus_{j=0}^{2^r} \Sigma^j(A_r \otimes_{A_{r-1}} \mathbb{Z}_2)$ are nonzero in exactly the same dimensions.

Received by the editors December 1, 1980.

1Supported in part by a grant from the National Science Foundation.
Proof of Lemma 1. Lemma 1 follows as a corollary to the following theorem which we prove by using a slight generalization of an argument of Giambalvo [1].

Theorem B. The map \(e : A \otimes_{A,\pi} \mathbb{Z}_2 \to H^* \text{MO} \langle \phi(r) \rangle \) given by evaluation on the Thom class \(U \in H^* \text{MO} \langle \phi(r) \rangle \) is a monomorphism.

As remarked in [1] it suffices to prove that \(e \) is a monomorphism on the primitive elements of \(A \otimes_{A,\pi} \mathbb{Z}_2 \). Since \(\chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \approx \mathbb{Z}_2[\xi_1^2, \xi_2^{2^{-1}}, \ldots, \xi_r^2, \ldots] \), where \(\xi_i \) is the Milnor basis element of \(A^* \) in dimension \(2^i - 1 \); there are primitives in \(A \otimes_{A,\pi} \mathbb{Z}_2 \) only in degrees \(2^i, 3 \cdot 2^{i-1}, 7 \cdot 2^{i-2}, \ldots, 2^{r+1} - 2 \) and \(2^i - 1 \) for \(i > r + 1 \). For purely dimensional reasons the first \(r + 1 \) primitives must be \(\text{Sq}^2, \text{Sq}^3 2^{-1}, \ldots, \text{Sq}^{r+1} 2^{-2} \). The remaining primitives \(\text{Q}^{2^i - 1}, i > r + 1 \), are projections of primitives in \(A \). Now

\[
\text{Sq}^j U = w_j \cdot U \quad \text{for } j = 2^i, 3 \cdot 2^{i-1}, \ldots, 2^{r+1} - 2
\]

and

\[
\text{Q}_1^{2^i-1} U = w_{2^i-1} \cdot U + (\text{decomposables}) \cdot U \quad \text{for } i > r + 1.
\]

Since the numbers \(j - 1 \) and \(2^j - 2 \) for \(i > r + 1 \) all have at least \(r \) ones in their dyadic expansion, \(\text{Sq}^j U \) and \(\text{Q}_1^{2^i-1} U \) are nonzero by Stong's result, proving that \(e \) is a monomorphism. To deduce the lemma we need to show that \(\text{SQ}^n \) is nonzero in \(A \otimes_{A,\pi} \mathbb{Z}_2 \) if and only if there is a monomial of dimension \(n \) in \(\chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \). To see this recall that there is a right \(A \)-module structure on \(A^* \), given by the duality pairing, with the property that

\[
\xi_k \chi \text{Sq}^j = \begin{cases}
\xi_j & \text{if } j = 2^k - 2^r, \\
0 & \text{otherwise.}
\end{cases}
\]

Since \(\chi \) commutes with the diagonal homomorphism in \(A \), we have

\[
\langle (\xi_1^2, \xi_2^2, \ldots, \xi_r^2), \chi \text{Sq}^n \rangle = 1 \quad \text{if } n = e_1 + 3e_2 + \cdots + (2^r - 1)e_r.
\]

Considering the induced right \(\chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \)-module structure on \(\chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \) then yields the result that \(\chi \text{Sq}^n \) is nonzero in \(\chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \) if and only if it is a monomial of dimension \(n \) in \(\chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \) completing the proof of Lemma 1.

Proof of Lemma 2. By only a slight modification of the argument given by Peterson, in [3], to compute \(\chi(A \otimes A, \mathbb{Z}_2)^* \) and the fact that

\[
A^*_r = A^*/(\xi_1^{2^r+1}, \xi_2^2, \ldots, \xi_{r+1}, \xi_{r+2}, \ldots),
\]

we can show that as \(\mathbb{Z}_2 \)-vector spaces

\[
\chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \approx \Lambda(\xi_1^2, \xi_2^{2^{-1}}, \ldots, \xi_r^2, \xi_r + 1)
\]

where the right-hand side is the exterior algebra over \(\mathbb{Z}_2 \) generated by \(\xi_1^2, \ldots, \xi_{r+1} \).

We define a map \(\lambda : \Sigma^{2^r+1} \chi(A \otimes_{A,\pi} \mathbb{Z}_2) \to \chi(A \otimes_{A,\pi} \mathbb{Z}_2)^* \) of vector spaces over \(\mathbb{Z}_2 \), by

\[
\lambda(\xi_1^{2^r} \xi_2^{2^{-1} \cdot k_2} \cdots \xi_{r+1}^{e_{r+1}}) = \xi_1^{2^{e_1+2e_2}} \xi_2^{2^{-1} \cdot k_2} \cdots \xi_{r+1}^{e_{r+1}}
\]
for $e_i = 0$ or 1. Since λ is a monomorphism it follows that $A \otimes A_{-1} Z_2$ is nonzero in dimension n if $\bigoplus_{j=0}^{(2^{r+1})} \Sigma^j A_r \otimes A_{-1} Z_2$ is. Conversely we define a map

$$\rho: \chi(A \otimes A_{-1} Z_2)^* \rightarrow \bigoplus_{j=0}^{(2^{r+1})} \Sigma^j \chi(A_r \otimes A_{-1} Z_2)^*$$

by the following procedure. Suppose that

$$\xi_1^{2a_1} \xi_2^{2a_2} \cdots \xi_{r+1}^{a_{r+1}} \cdots \xi_j^a$$

is a monomial in $\chi(A \otimes A_{-1} Z_2)^*$ of dimension n. Begin by replacing it with the monomial

$$(3) \xi_1^{2a_1 + 2^{-r}b_1} \xi_2^{2^{-r}b_2} \cdots \xi_{r+1}^{b_{r+1}} \cdots \xi_j^a$$

where $\omega = \sum_{i=r+1}^j a_i$ and $v = a_{r+2} + 3a_{r+3} + 7a_{r+4} + \cdots + (2^{j-r-1} - 1)a_j$. This monomial is also of dimension n. Next we inductively “reduce” the monomial while at the same time preserving its dimension. If (3) is of the form

$$\xi_1^{2a_1 + 2^{-i}b_1} \cdots \xi_{i-1}^{2^{-i-1}b_{i-1}} \xi_i^{2^{-i-1}b_i} \cdots \xi_{r+1}^{b_{r+1}} \cdots \xi_j^a$$

with $i < r + 1$, $b_i \in Z$ and each e_i either 0 or 1 we replace it with the monomial

$$(4) \xi_1^{2(b_1 + c_1 + 2^{-i-1}b_{i+1})} \cdots \xi_{i-1}^{2^{-i-1}b_{i-1}} \cdots \xi_{r+1}^{b_{r+1}} \cdots \xi_j^a$$

where $b_i = e_i + 2e_i-1 + 4e_i-2 + \cdots + 2^{i+2} - 2i + 2^{i-1} - 1$, each e_i is either 0 or 1 and $c = e_i-1 + 3e_i-2 + \cdots + (2^{i-2} - 1)e_2 + (2^{i-1} - 1)t$. The monomial (4) also has dimension n. Continuing in this fashion we end up with a monomial of the form

$$(5) \xi_1^{2^{2 i+1} + 2^{-i}b_1} \cdots \xi_{i-1}^{2^{-i}b_{i-1}} \cdots \xi_{r+1}^{b_{r+1}} \cdots \xi_j^a$$

with each e_j zero or one. We define $\rho(\xi_1^{2a_1} \xi_2^{2a_2} \cdots \xi_j^a)$ to be the nonzero monomial $\xi_1^{2a_1} \cdots \xi_{r+1}^{\xi_j^a}$ in $\Sigma^{2^{r+1}} \chi(A_r \otimes A_{-1} Z_2)^*$ of dimension n; so

$$\bigoplus_{j=0}^{(2^{r+1})} \Sigma^j \chi(A_r \otimes A_{-1} Z_2)^*$$

is nonzero in dimension n completing the proof of Lemma 2.

ADDED IN PROOF. Related results about the vanishing of Stiefel-Whitney classes have been proved by R. Stong. See §3 of *Cobordism and Stiefel-Whitney Numbers*, Topology 4 (1965), 241–246.

REFERENCES

4. R. Stong, *Determination of $H^*(BO(k, \ldots, \infty))$ and $H^*(BU(k, \ldots, \infty))$, Trans. Amer. Math. Soc. 104 (1963), 526–544.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201