Stiefel-Whitney classes in $H^{\ast } B\textrm {O}\langle \varphi (r)\rangle$
HTML articles powered by AMS MathViewer
- by A. P. Bahri and M. E. Mahowald
- Proc. Amer. Math. Soc. 83 (1981), 653-655
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627713-9
- PDF | Request permission
Abstract:
We determine the Stiefel-Whitney classes in ${H^*}(BO;{{\mathbf {Z}}_2})$ which are mapped nontrivally by the homomorphism induced by the covering projection $p:BO\left \langle {\phi (r)} \right \rangle \to BO$.References
- V. Giambalvo, On $\langle 8\rangle$-cobordism, Illinois J. Math. 15 (1971), 533β541. MR 287553
- W. H. Lin, D. M. Davis, M. E. Mahowald, and J. F. Adams, Calculation of Linβs Ext groups, Math. Proc. Cambridge Philos. Soc. 87 (1980), no.Β 3, 459β469. MR 569195, DOI 10.1017/S0305004100056899
- F. P. Peterson, Lectures on cobordism theory, Lectures in Mathematics; Department of Mathematics, Kyoto University, vol. 1, Kinokuniya Book Store Co., Ltd., Tokyo, 1968. Notes by M. Mimura. MR 0234475
- Robert E. Stong, Determination of $H^{\ast } (\textrm {BO}(k,\cdots ,\infty ),Z_{2})$ and $H^{\ast } (\textrm {BU}(k,\cdots ,\infty ),Z_{2})$, Trans. Amer. Math. Soc. 107 (1963), 526β544. MR 151963, DOI 10.1090/S0002-9947-1963-0151963-5
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 653-655
- MSC: Primary 55R40
- DOI: https://doi.org/10.1090/S0002-9939-1981-0627713-9
- MathSciNet review: 627713