TOTTALLY REAL SUBMANIFOLDS IN A 6-SPHERE

NORIO EJIRI

Abstract. A 6-dimensional sphere S^6 has an almost complex structure induced by properties of Cayley algebra. We investigate 3-dimensional totally real submanifolds in S^6 and classify 3-dimensional totally real submanifolds of constant sectional curvature.

1. Introduction. It is well known that a 6-dimensional (unit) sphere S^6 admits an almost Hermitian structure, which is a typical example of Tachibana manifold or a nearly Kaehler manifold.

There are two typical classes among all submanifolds of an almost Hermitian manifold: The one is the class of almost Hermitian Submanifolds and the other is the class of totally real submanifolds.

A. Gray [3] proved that S^6 has no 4-dimensional almost Hermitian submanifolds. On the contrary, S^6 admits totally real submanifolds.

The purpose of this paper is to prove the following.

Theorem 1. A 3-dimensional totally real submanifold of S^6 is orientable and minimal.

Theorem 2. Let M be a 3-dimensional totally real submanifold of constant curvature c in S^6. Then either $c = 1$ (i.e., M is totally geodesic) or $c = 1/16$.

The latter case in Theorem 2 is locally equivalent to a minimal immersion $S^3(1/16) \to S^6$ defined by spherical harmonics of degree 6 [1].

The author is grateful to Professor K. Ogiue for his useful criticism.

2. Almost Hermitian structures on S^6. Let e_1, \ldots, e_7 be the standard basis for R^7. Then the vector cross product in R^7 is defined by the table for $e_j \times e_k$.

<table>
<thead>
<tr>
<th>j/k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>e_3</td>
<td>$-e_2$</td>
<td>e_5</td>
<td>$-e_4$</td>
<td>e_7</td>
<td>$-e_6$</td>
</tr>
<tr>
<td>2</td>
<td>$-e_3$</td>
<td>0</td>
<td>e_1</td>
<td>e_6</td>
<td>$-e_7$</td>
<td>$-e_4$</td>
<td>e_5</td>
</tr>
<tr>
<td>3</td>
<td>e_2</td>
<td>$-e_1$</td>
<td>e</td>
<td>$-e_7$</td>
<td>$-e_6$</td>
<td>e_5</td>
<td>e_4</td>
</tr>
<tr>
<td>4</td>
<td>$-e_5$</td>
<td>$-e_6$</td>
<td>e_7</td>
<td>0</td>
<td>e_1</td>
<td>e_2</td>
<td>$-e_3$</td>
</tr>
<tr>
<td>5</td>
<td>e_4</td>
<td>e_7</td>
<td>e_6</td>
<td>$-e_1$</td>
<td>0</td>
<td>$-e_3$</td>
<td>$-e_2$</td>
</tr>
<tr>
<td>6</td>
<td>$-e_7$</td>
<td>e_4</td>
<td>$-e_5$</td>
<td>$-e_2$</td>
<td>e_3</td>
<td>0</td>
<td>e_1</td>
</tr>
<tr>
<td>7</td>
<td>e_6</td>
<td>$-e_5$</td>
<td>$-e_4$</td>
<td>e_3</td>
<td>e_2</td>
<td>$-e_1$</td>
<td>0</td>
</tr>
</tbody>
</table>

Received by the editors January 26, 1981.

1980 Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 58D10.

Key words and phrases. Cayley algebra, Tachibana space, nearly Kaehler manifold, totally real submanifold, Killing frame.

© 1981 American Mathematical Society

0002-9939/81/0000-0569/$02.25

759
We put $S^6 = \{ x \in R^7; \| x \| = 1 \}$ and define an almost complex structure J on S^6 by $J A = x \times A$, where $x \in S^6$ and $A \in T_x S^6$ (the tangent space of S^6 at x). It is easily seen that the Riemannian metric \bar{g} on S^6 induced from R^7 is a Hermitian metric with respect to J. We denote by $\bar{\nabla}$ the covariant differentiation with respect to the Riemannian connection on S^6. Then we have the following (cf. for example [2]):

Lemma 2.1. $(\bar{\nabla}_x J) X = 0$ holds for all vector fields X on S^6.

An almost Hermitian manifold with this property is called a Tachibana manifold or a nearly Kaehler manifold.

We define a skew-symmetric tensor field G of type (1, 2) by

$$G(X, Y) = (\bar{\nabla}_x J) Y.$$

Then we have

Lemma 2.2. (i) $G(X, JY) = -JG(X, Y)$ and
(ii) $(\bar{\nabla}_x G)(Y, Z) = \bar{g}(\bar{g}(Y, JZ)X + \bar{g}(X, Z)JY - \bar{g}(X, Y)JZ$ hold for all vector fields X, Y, Z on S^6.

3. 3-dimensional totally real submanifolds of S^6. Let (M, g) be a 3-dimensional totally real submanifold of (S^6, J, \bar{g}). We denote by ∇ the covariant differentiation on M. Then the second fundamental form σ of the immersion is given by

$$(3.1) \quad (X, Y) = \bar{\nabla}_X Y - \nabla_X Y$$

for vector fields X, Y on M. For a normal vector field ξ, we denote by $-A_\xi X$ and $\nabla_X^\perp \xi$ the tangential and normal components of $\nabla_X \xi$ respectively so that

$$(3.2) \quad \nabla_X \xi = -A_\xi X + \nabla_X^\perp \xi.$$

Then σ and A_ξ are related by $g(\sigma(X, Y), \xi) = g(A_\xi X, Y)$.

Let R and R^\perp be the curvature tensor of ∇ and ∇^\perp, respectively. Then the equations of Gauss, Codazzi and Ricci are given respectively by

$$(3.3) \quad g(R(X, Y)Z, W) = g(X, Z)g(Y, W) - g(X, W)g(Y, Z) + \bar{g}(\sigma(X, Z), \sigma(Y, W)) - \bar{g}(\sigma(X, W), \sigma(Y, Z)),$$

$$(3.4) \quad (\nabla_X \sigma)(Y, Z) - (\nabla_Y \sigma)(X, Z) = 0,$$

$$g(R^\perp(X, Y)\xi, \eta) - g([A_\xi, A_\eta] X, Y) = 0,$$

where $(\nabla_X \sigma)(Y, Z) = \nabla_X^\perp \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z)$.

4. Proof of Theorem 1. Let (M, g) be a 3-dimensional totally real submanifold of (S^6, J, \bar{g}). First of all, we shall prove the following.

Lemma 4.1. $G(X, Y)$ is normal to M for X, Y tangent to M.

Proof. From (3.1) and (3.2) we have

$$g((\bar{\nabla}_x J) Y, Z) = g(J\sigma(X, Z), Y) - g(J\sigma(X, Y), Z),$$

$$g((\bar{\nabla}_x J) Y, Z) = g(J\sigma(Z, Y), X) - g(J\sigma(Z, X), Y),$$

$$g((\bar{\nabla}_x J) Y, Z) = g(J\sigma(Y, X), Z) - g(J\sigma(Y, Z), X),$$

$$g((\bar{\nabla}_x J) Y, Z) = g(J\sigma(Y, Z), X) - g(J\sigma(Y, X), Z),$$

$$g((\bar{\nabla}_x J) Y, Z) = g(J\sigma(Z, X), Y) - g(J\sigma(Z, Y), X).$$
for X, Y, Z tangent to M. Since \tilde{g} is Hermitian with respect to J, $\tilde{\nabla}_x J$ is skew-symmetric with respect to \tilde{g}. This, together with Lemma 2.1, implies that the left-hand sides of the above three equations are equal to each other. Therefore we have $g((\tilde{\nabla}_x J) Y, Z) = 0$, which means $G(X, Y)$ is orthogonal to M. Q.E.D.

By Lemma 2.2(i), we obtain

$$(\tilde{\nabla}_x G)(JY, JZ) = \tilde{\nabla}_x G(JY, JZ) - G(\tilde{\nabla}_x JY, JZ) - G(JY, \tilde{\nabla}_x JZ)$$

$$= -\tilde{\nabla}_x G(Y, Z) - G((\tilde{\nabla}_x J) Y, JZ) - G(JY, J\tilde{\nabla}_x Z)$$

$$- G(JY, (\tilde{\nabla}_x J) Z) - G(JY, J\tilde{\nabla}_x Z)$$

$$+ G(\tilde{\nabla}_x Y, Z) + JG(G(X, Y), Z)$$

$$+ G(Y, \tilde{\nabla}_x Z)$$

$$= - (\tilde{\nabla}_x G)(Y, Z) + JG(G(X, Y), Z) + JG(G(Y, X), Z) + JG(Y, G(X, Z))$$

for X, Y, Z tangent to M. This, combined with Lemma 2.2(ii), implies

$$G(Y, G(Z, X)) + G(Z, G(X, Y)) = g(X, Y) Z - g(X, Z) Y$$

and hence $G(X, G(Y, Z)) = g(X, Z) Y - g(X, Y) Z$ or equivalently

$$(4.1) \quad JG(X, JG(Y, Z)) = g(X, Z) Y - g(X, Y) Z$$

for X, Y, Z tangent to M. Since $JG(X, Y)$ is tangent to M by Lemma 4.1, we see from (4.1) that

$$g(JG(X, Y), Y) X - g(JG(X, Y), X) Y = JG(JG(X, Y), JG(X, Y)) = 0.$$
for X, Y, Z tangent to M. Let e_1, e_2, e_3 be a local field of orthonormal frames on M. Then we may assume without loss of generality that $JG(e_1, e_2) = e_3$, $JG(e_2, e_3) = e_1$ and $JG(e_3, e_1) = e_2$. Hence we have from (4.4) that the trace of $\sigma = 0$, which implies that M is minimal.

5. Proof of Theorem 2. Let M be a 3-dimensional totally real submanifold of constant curvature c in S^6. Then the equation (3.3) of Gauss reduces to

\[(1 - c)\left(g(X, Z)g(Y, W) - g(X, W)g(Y, Z) \right) + \bar{g}(\sigma(X, Z), \sigma(Y, W)) - \bar{g}(\sigma(X, W), \sigma(Y, Z)) = 0.\]

If $c = 1$, then M is totally geodesic. Therefore it is sufficient to consider the case $c < 1$.

Consider a cubic function $f(X) = \bar{g}(\sigma(X, X), JX)$ defined on \{ $X \in T_x M; \|X\| = 1$ \}. If f attains its maximum at x, then $\bar{g}(\sigma(X, X), JY) = 0$ for Y orthogonal to X and hence $\sigma(X, X)$ is proportional to JX. Therefore, if f is constant, $\sigma(X, X) = 0$ for all X, since M is minimal. Thus f is not constant, since we are considering the case where M is not totally geodesic.

Choose e_1 to be the maximum point of f at each point $x \in M$. By the similar argument to the above, we see that f restricted to \{ $X \in T_x M; \|X\| = 1$ and $g(X, e_1) = 0$ \} is not constant. Choose e_2 to be the maximum point of f restricted to \{ $X \in T_x M; \|X\| = 1$ and $g(X, e_1) = 0$ \} and choose e_3 so that e_1, e_2, e_3 form an orthonormal frame field. Then we easily see that

\[(5.2) \quad \bar{g}(\sigma(e_2, e_2), Je_3) = 0.\]

Put $a_i = \bar{g}(\sigma(e_i, e_i), Je_i)$. Then we have $a_1 + a_2 + a_3 = 0$, since M is minimal. We see that $a_1 > 0$, because a_1 is the maximum value for the cubic function f and M is not totally geodesic. Moreover, from (5.1) we have $1 - c + a_1a_2 - a_2^2 = 0$ and $1 - c + a_1a_3 - a_3^2 = 0$, since (4.3) implies that $\bar{g}(\sigma(X, Y), JZ)$ is symmetric in X, Y, Z. Therefore we get

\[(a_1, a_2, a_3) = \left(2\sqrt{(1 - c)/3}, -\sqrt{(1 - c)/3}, -\sqrt{(1 - c)/3} \right),\]

which implies that

\[(5.3) \quad \sigma(e_1, e_1) = 2\sqrt{(1 - c)/3} \ Je_1\]

and

\[(5.4) \quad \bar{g}(\sigma(X, X), Je_1) = -\sqrt{(1 - c)/3}\]

for a unit vector X orthogonal to e_1. In particular, putting $X = (e_2 + e_3)/\sqrt{2}$, we obtain

\[(5.5) \quad \bar{g}(\sigma(e_2, e_3), Je_1) = 0.\]

In consideration of (5.2), (5.3), (5.4), (5.5) and minimality of M, we may put $\sigma(e_2, e_2) = -\sqrt{(1 - c)/3} \ Je_1 + \lambda Je_2$, $\sigma(e_3, e_3) = -\sqrt{(1 - c)/3} \ Je_1 - \lambda e_2$, $\sigma(e_2, e_3) = -\lambda Je_3$. Putting $X = W = e_2$ and $Y = Z = e_3$ in (5.1), we obtain
\[\lambda = \sqrt{2(1 - c)/3}. \] Therefore we have

\[\sigma(e_2, e_2) = -\sqrt{(1 - c)/3} J e_1 + \sqrt{2(1 - c)/3} J e_2, \]

\[\sigma(e_3, e_3) = -\sqrt{(1 - c)/3} J e_1 - \sqrt{2(1 - c)/3} J e_2, \]

\[\sigma(e_2, e_3) = -\sqrt{2(1 - c)/3} J e_3, \]

which, together with (5.3), (5.4) and (5.5), implies

\[\sigma(e_1, e_2) = -\sqrt{(1 - c)/3} J e_2, \quad \sigma(e_1, e_3) = -\sqrt{(1 - c)/3} J e_3. \]

Applying the equation (3.4) of Codazzi to (5.3), (5.6) and (5.7), we obtain \(\nabla e_i e_j = 0 \), \(\nabla e_1 e_2 = -\frac{1}{4} e_3 \), \(\nabla e_1 e_3 = -\frac{1}{4} e_2 \), \(\nabla e_2 e_3 = -\frac{1}{4} e_1 \). Therefore we have \(R(e_1, e_2) e_1 = 1/16 e_2 \) and hence \(c = 1/16 \).

Remark 1. Let \(M \) be a 3-dimensional totally real submanifold of \(S^6 \) and \(\sigma \) its second fundamental form. If we put \(\tau = -J \sigma \), then \(\tau \) is a symmetric tensor field of type \((1, 2)\) on \(M \) and the equations of Gauss, Codazzi and Ricci can be written in terms of the intrinsic tensor field \(\tau \). By identifying the tangent bundle of \(M \) with the normal bundle, we can state the fundamental theorem in terms of intrinsic language of \(M \). In particular, using a Killing frame \(e_1, e_3, e_3 \) on \(S^3(1/16) \) (cf. for example [5]), we can give a minimal immersion of \(S^3(1/16) \) into \(S^6 \) as a totally real submanifold.

Remark 2. From Moore's theorem [4], we know that the minimum number \(l \) for which \(S^3(c) \) can admit a (nontotally geodesic) minimal immersion into \(S^l \) is 6. This gives a counterexample for a problem in [1, p. 44].

References

Department of Mathematics, Tokyo Metropolitan University, Tokyo, Japan