An invariant for continuous factors of Markov shifts
HTML articles powered by AMS MathViewer
- by Bruce Kitchens
- Proc. Amer. Math. Soc. 83 (1981), 825-828
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630029-8
- PDF | Request permission
Abstract:
Let ${\Sigma _A}$ and ${\Sigma _B}$ be subshifts of finite type with Markov measures $(p,P)$ and $(q,Q)$. It is shown that if there is a continuous onto measure-preserving factor map from ${\Sigma _A}$ to ${\Sigma _B}$, then the block of the Jordan form of $Q$ with nonzero eigenvalues is a principal submatrix of the Jordan form of $P$. If ${\Sigma _A}$ and ${\Sigma _B}$ are irreducible with the same topological entropy, then the same relationship holds for the matrices $A$ and $B$. As a consequence, ${\zeta _B}(t)/{\zeta _A}(t)$, the ratio of the zeta functions, is a polynomial. From this it is possible to construct a pair of equalentropy subshifts of finite type that have no common equal-entropy continuous factor of finite type, and a strictly sofic system that cannot have an equal-entropy subshift of finite type as a continuous factor.References
- Roy L. Adler and Brian Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv+84. MR 533691, DOI 10.1090/memo/0219
- R. Bowen and O. E. Lanford III, Zeta functions of restrictions of the shift transformation, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 43–49. MR 0271401
- Ethan M. Coven and Michael E. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory 8 (1974/75), no. 2, 167–175. MR 383378, DOI 10.1007/BF01762187
- Ethan M. Coven and Michael E. Paul, Sofic systems, Israel J. Math. 20 (1975), no. 2, 165–177. MR 383379, DOI 10.1007/BF02757884
- Joachim Cuntz and Wolfgang Krieger, Topological Markov chains with dicyclic dimension groups, J. Reine Angew. Math. 320 (1980), 44–51. MR 592141, DOI 10.1515/crll.1980.320.44
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Brian Marcus, Factors and extensions of full shifts, Monatsh. Math. 88 (1979), no. 3, 239–247. MR 553733, DOI 10.1007/BF01295238
- Masakazu Nasu, Uniformly finite-to-one and onto extensions of homomorphisms between strongly connected graphs, Discrete Math. 39 (1982), no. 2, 171–197. MR 675863, DOI 10.1016/0012-365X(82)90141-8
- William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55–66. MR 161372, DOI 10.1090/S0002-9947-1964-0161372-1
- William Parry and R. F. Williams, Block coding and a zeta function for finite Markov chains, Proc. London Math. Soc. (3) 35 (1977), no. 3, 483–495. MR 466490, DOI 10.1112/plms/s3-35.3.483
- Benjamin Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77 (1973), 462–474. MR 340556, DOI 10.1007/BF01295322
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI 10.2307/1970908
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 825-828
- MSC: Primary 28D20; Secondary 54H20, 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630029-8
- MathSciNet review: 630029