INVOLUTIONS WITH FIXED POINT SET
OF CONSTANT CODIMENSION

KOICHI IWATA

ABSTRACT. The cobordism classes of manifolds admitting involutions with fixed point set of codimension 5 are determined by means of Stiefel-Whitney classes.

1. Introduction. Let \(\mathcal{R}_n \) be the group of nonoriented cobordism classes of \(n \)-dimensional smooth manifolds and let \(J_n^k \) be its subset consisting of the classes which are represented by manifolds admitting smooth involutions with fixed point set of constant codimension \(k \). \(J_n^k \) is a subgroup of \(\mathcal{R}_n \) and \(J_\ast^k = \sum_{n-k}^\infty J_n^k \) is an ideal of the nonoriented cobordism ring \(\mathcal{R}_\ast = \sum_{n=0}^\infty \mathcal{R}_n \). Capobianco [1] proved the following results:

Proposition 1. \(J_n^3 \) is the set of classes \(\alpha \) in \(\mathcal{R}_n \) with \(W_{i}W_{j-1}(\alpha) = W_{i+2}W_{j-3}(\alpha) = 0 \), for each \(i, j, 0 < j < n, 5 < i < n \).

Proposition 2. \(J_n^3 \subseteq J_\ast^3 \).

In this note, we shall prove

Theorem. \(J_n^5 \) is the set of classes \(\alpha \) in \(J_\ast^3 \) with \(W_{n-2}W_2^4(\alpha) = W_{n-9}W_2^3W_3(\alpha) = W_{n-10}W_2^2W_3^2(\alpha) = W_{n-11}W_2W_3^3(\alpha) = W_{n-12}W_3^4(\alpha) = 0 \).

2. Characteristic numbers of classes in \(J_n^5 \). Let \(\xi \to V \) be a smooth \(k \)-plane bundle over a closed smooth manifold \(V \) and let \(\pi: RP(\xi) \to V \) be the associated projective space bundle. Denote by \(a \) the characteristic class of the canonical line bundle \(\lambda \to RP(\xi) \). Then by [2, \$21], \(H^*(RP(\xi); \mathbb{Z}_2) \) is the free \(H^*(V; \mathbb{Z}_2) \)-module via \(\pi^* \) on the classes \(1, a, \ldots, a^{k-1} \), subject to the relation \(\sum_{j=0}^{k} a^{k-j}\pi^*(v_j) = 0 \), where \(v_j \) is the \(j \)th Whitney class of \(\xi \). The total Stiefel-Whitney class of \(RP(\xi) \) is given by

\[
W(RP(\xi)) = \pi^*(W(V))\left(\sum_{j=0}^{k} (1 + a)^{k-j}\pi^*(v_j)\right).
\]

Now suppose that a class \(\alpha \) is represented by a manifold \(M^n \) admitting an involution with fixed point set \(F \) of codimension \(k \). Let \(q: \nu \to F \) be the normal bundle. Then by [2, (22.2)], \(\alpha \) is the class of \(RP(\nu \oplus R) \), which is the total space of the projective space bundle associated to \(p: \nu \oplus R \to F \). Let \(e \), resp. \(c \), be the characteristic class of the canonical line bundle \(\lambda \to RP(\nu \oplus R) \), resp. \(\lambda \to RP(\nu) \).
Then we have

Proposition 3. For any \(x \in H^j(F; Z_2), 0 < j < n - k, \)

\[
\langle p^*(x)e^{n-j}, [RP(\nu \oplus R)] \rangle = \langle q^*(x)e^{n-1-j}, [RP(\nu)] \rangle.
\]

The proof can be found in [5]. It follows from [2, §25]

Proposition 4. If \(q^*(x)c^{n-1} \) represents a characteristic class of \(\lambda \to RP(\nu), \) then

\[
\langle p^*(x)e^{n-j}, [RP(\nu \oplus R)] \rangle = 0.
\]

Let us apply these facts to the case of constant codimension 5.

Lemma 5. If \(\alpha \in J'_*, \) then \(W^{n-8}W_2^2(a) = W^{n-9}W_2^3W_3(\alpha) = W^{n-10}W_2^2W_3^2(\alpha) = W^{n-11}W_2^3W_3^2(\alpha) = 0. \)

Proof. Denote \(W'_j = W'_j(RP(\nu \oplus R)), W'_j = W'_j(RP(\nu)) \) and let \(v_j, \) resp. \(w_j, \) be the \(j \)th Whitney class of \(\nu, \) resp. \(F. \) By Propositions 3 and 4,

\[
\begin{align*}
W^{n-8}W_2^4 & = p^*\{(w_1 + v_1)^{n-8}w_1\} e^8, \\
(W'_1 + c)^{n-9}(W'_2 + W'_1c)(W'_3 + W'_2c)c^3 + (W'_1 + c)(W'_2 + W'_1c)^2c^3 \\
& \quad + (W'_1 + c)c^7 + (W'_2 + W'_1c + c^2)^4 \\
& = q^*\{(w_1 + v_1)^{n-8}w_1\} c^7,
\end{align*}
\]

\[
\begin{align*}
W^{n-10}W_2^2W_3^2 & = p^*\{(w_1 + v_1)^{n-10}w_2\} e^8, \\
(W'_1 + c)^{n-10}\{W'_2W'_2c^3 + W'_3^2c^3 + W'_2^2c\} & = q^*\{(w_1 + v_1)^{n-10}w_1\} c^7,
\end{align*}
\]

\[
\begin{align*}
W^{n-11}W_2^3W_3^2 & = p^*\{(w_1 + v_1)^{n-11}w_3\} e^8, \\
(W'_1 + c)^{n-11}\{W'_2W'_2W'_3^2 + W'_3W'_2W'_2c + (W'_2^4 + W'_1W'_2W'_3^2 + W'_1W'_2W'_3^2) \}
& \quad + (W'_1W'_2^3 + W'_1W'_3)c^3 \\
& = q^*\{(w_1 + v_1)^{n-11}w_3\} c^7,
\end{align*}
\]

\[
\begin{align*}
W^{n-12}W_4^4 & = p^*\{(w_1 + v_1)^{n-12}w_4\} e^8, \\
(W'_1 + c)^{n-12}W_2^2c^3 & = q^*\{(w_1 + v_1)^{n-12}w_4\} c^7.
\end{align*}
\]

3. **A system of generators of \(J'_*. \)** As is well known, \(R_* \) is a graded polynomial algebra over \(Z_2 \) with one generator in each dimension \(n \) which is not of the form \(2^r - 1. \) We shall choose a suitable system of generators of \(R_* \) for our purpose. Let \((n_1, n_2, \ldots, n_{2k}) \) be a \(2k \)-tuple of nonnegative integers with \(n_1 + n_2 + \cdots + n_{2k} = n - 2k + 1. \) We denote by \(RP(n_1, n_2, \ldots, n_{2k}) \) the projective space bundle associated to the bundle \(\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_{2k} \) over \(RP(n_1) \times RP(n_2) \times \cdots \times RP(n_{2k}), \) where \(\lambda_i (i = 1, 2, \ldots, 2k) \) is the pull-back of the canonical line bundle over the \(i \)th factor. Stong [4, Lemma 3.4] proved that
RP(n_1, n_2, \ldots, n_{2k}) belongs to \mathcal{J}^k_m and is indecomposable in \mathcal{M}_* if and only if
\[
\left(\begin{array}{c}
 n_1
\end{array}\right) + \left(\begin{array}{c}
 n_2
\end{array}\right) + \cdots + \left(\begin{array}{c}
 n_{2k}
\end{array}\right)
\]
is odd. First, we shall show

Lemma 6. For each \(n > 13 \), not of the form \(2^r - 1 \) or \(2^r - 2 \), there exists a generator \(u_n \in \mathcal{J}^5_m \) which is indecomposable in \(\mathcal{M}_* \).

Proof. If \(\left(\begin{array}{c}
 n\
 2
\end{array}\right) \equiv 0 \mod 2 \), \(RP(n - 9, 0, \ldots, 0) \) (9 zeroes) is indecomposable in \(\mathcal{M}_* \). Consider the case \(\left(\begin{array}{c}
 n\
 2
\end{array}\right) \equiv 1 \mod 2 \). Let \(n - 1 = 2^r + 2^{r+1} + \cdots + 2^{r+k}, \ r_1 > r_2 > \cdots > r_k > 0 \). Since \(\left(\begin{array}{c}
 n\
 2
\end{array}\right) = \left(\begin{array}{c}
 n - 1\
 8
\end{array}\right) \), \(\{r_1, r_2, \ldots, r_k\} \) contains 3. When \(\{r_1, r_2, \ldots, r_k\} \) does not contain 1, \(RP(n - 11, 1, 1, 0, \ldots, 0) \) (7 zeroes) is indecomposable in \(\mathcal{M}_* \). Finally, suppose that \(\{r_1, r_2, \ldots, r_k\} \) contains both 1 and 2. Since \(n - 1 \) is not of the form \(2^r - 1 \) or \(2^r - 2 \), there exists a number \(i \) such that \(r_i > r_{i+1} + 1 \). Then, \(RP(2r_1 + \cdots + 2r_k - 2, 2r_1 + \cdots + 2r_k - 14, 8, 0, \ldots, 0) \) (7 zeroes) is indecomposable in \(\mathcal{M}_* \).

Let \(x_2 \) be the class of \(RP(2) \) and let \(x_{2^n} \) be the class of \(RP(2^n) \cup RP(2^n) \) for \(n > 1 \). Denote by \(y_n \) (\(n = 5, 6 \)) the class of \(RP(n - 3, 3, 0, 0, 0, 0) \) and by \(z_n \) (\(n = 9, 10, 12 \)) the class of \(RP(n - 5, 0, 0, 0, 0, 0, 0, 0) \). Furthermore, by \([3, \S 7, \text{Remark}] \) we know that there exists a class \(z_{11} \) of an indecomposable manifold which belongs to \(J^5_{11} \). Thus we have

Lemma 7. \(\mathcal{M}_* \) is a polynomial algebra over \(\mathbb{Z}_2 \) with the system of generators: \(\{x_2, x_{2^n} (n = 1, 2, \ldots), u_n (n > 13, n \neq 2^r, 2^r - 1), y_5, y_6, z_9, z_{10}, z_{11}, z_{12}\} \).

Now we shall go into \(J^5_m \). By direct computations as in Lemma 5, we have

Lemma 8. If \(n < 10 \) or \(n = 12 \), then \(s_n(\alpha) = 0 \) for any \(\alpha \in J^5_n \).

Moreover, we have

Lemma 9. Let \(n = 2^s, s > 4 \). Then \(J^5_n \) contains a class \(\alpha \) such that \(s_{2-1,2-1}(\alpha) \equiv 1 \mod 2 \).

Proof. For \(s = 4 \), \(RP(7, 0, \ldots, 0) \) (9 zeroes) is as required. For \(s > 4 \),

\[
RP(2^{s-3} - 2, s^{s-3} - 1, \ldots, 2^{s-3} - 1, 0, 0)
\]
is as required.

Let us observe monomials of the generators for \(\mathcal{M}_* \). First, notice that \(J^3_m \subset J^2_m \)
follows from \([4] \) and Proposition 1. By their definitions, \(y_5, y_6 \in J^2_m \) and \(z_9, z_{10}, z_{12} \in J^2_m \). Furthermore, Proposition 1 shows \(y_5, y_6, x_2^2 \in J^2_m \) and Lemma 9 shows \(x_2^2 \in J^3_m \) for \(r > 3 \). Clearly, \(y_5^2 \in J^4_m \). Now consider \(y_6^2 \). By the examination of the characteristic numbers, we can see that \(y_6^2 \) is the class \(x_2 y_5^2 + \{RP(3, 2, 2, 0, 0, 0, 0)\} \).

Recall that \(RP(\lambda) = RP(3, 2, 2, 0, 0, 0, 0) \) is the projective space bundle over \(M = RP(3) \times RP(2)^2 \times RP(0)^3 \) associated to \(\lambda = \lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_6 \rightarrow M \). An involution of \(M \), given by \((a, b_1, b_2, c_1, c_2, c_3) \rightarrow (a, b_2, b_1, c_1, c_2, c_3) \), induces a fiber
preserving involution T of $RP(\lambda)$; i.e., we can define an involution T of $RP(\lambda)$ by

$$T(u_1, u_2, u_3, u_4, u_5, u_6) = (-u_1, -u_3, -u_2, -u_4, u_5, u_6).$$

It is easy to see that all the components of the fixed point set of T are of codimension 5. Therefore $y_6^2 \in J_4^2$. Referring to the results of [1], we can show that J_4^2 contains all monomials of generators for J_4^2 except those of the form

$$y_5y_6x(m), \quad z_9x(m), \quad x_4^2x(m), \quad z_{10}x(m), \quad z_{12}x(m).$$

Here, $x(m)$ is the class of $RP(2^r) \times RP(2^{r_2}) \times \cdots \times RP(2^{r_t})$ for $m = 2^{r_1} + 2^{r_2} + \cdots + 2^t, r_1 > r_2 > \cdots > r_t > 0$. By straightforward calculation, we have the tables of characteristic numbers.

<table>
<thead>
<tr>
<th>$W_1^{n-9}W_2^3W_3^3$</th>
<th>$y_5y_6x(n - 11)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_1^{n-11}W_2^3W_3^3$</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$W_1^{n-8}W_2^4$</th>
<th>$x_4^2x(n - 8)$</th>
<th>$z_{10}x(n - 10)$</th>
<th>$z_{12}x(n - 12)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 $n \equiv 0, 4$ (8)</td>
<td>0 $n \equiv 0, 2$ (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 $n \equiv 2, 6$ (8)</td>
<td>1 $n \equiv 4, 6$ (8)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$W_1^{n-10}W_2^2W_3^2$</th>
<th>1</th>
<th>1 $n \equiv 0, 4$ (8)</th>
<th>1 $n \equiv 0, 6$ (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 $n \equiv 2, 6$ (8)</td>
<td>0 $n \equiv 2, 4$ (8)</td>
</tr>
</tbody>
</table>

Using these, together with Lemmas 5, 7 and 8, we can attain our theorem immediately.

Remark. As a corollary, we can show $J_{k+1}^{2k+1} \subset J_{k+1}^k$ for every integer $k > 3$.

References

College of General Education, Tohoku University, Sendai, Japan