A characterization of manifold decompositions satisfying the disjoint triples property
HTML articles powered by AMS MathViewer
- by Dennis J. Garity
- Proc. Amer. Math. Soc. 83 (1981), 833-838
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630031-6
- PDF | Request permission
Abstract:
A metric space $X$ satisfies the Disjoint Triples Property $({\text {D}}{{\text {D}}_{\text {3}}})$ if maps ${f_1}$, ${f_2}$ and ${f_3}$ from ${B^2}$ into $X$ are approximable by maps ${\tilde f_1}$, ${\tilde f_2}$ and ${\tilde f_3}$ with $\cap _{i = 1}^3{\tilde f_i}({B^2}) = \emptyset$. Those CE decompositions of manifolds satisfying ${\text {D}}{{\text {D}}_3}$ and yielding finite-dimensional nonmanifold decomposition spaces are shown to be precisely those intrinsically $0$-dimensional decompositions which yield nonshrinkable null cellular decompositions under amalgamation. This characterization results in another proof of the fact that ${E^n}/G \times {E^1}$ is secretly $0$-dimensional where $G$ is a CE usc decomposition of ${E^n}$, $n \geqslant 4$, with ${E^n}/G$ finite dimensional.References
- R. H. Bing, Upper semicontinuous decompositions of $E^3$, Ann. of Math. (2) 65 (1957), 363–374. MR 92960, DOI 10.2307/1969968
- J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, DOI 10.2307/1971245
- Charles O. Christenson and William L. Voxman, Aspects of topology, Pure and Applied Mathematics, Vol. 39, Marcel Dekker, Inc., New York-Basel, 1977. MR 0487938
- Robert J. Daverman, A nonshrinkable decomposition of $S^{n}$ determined by a null sequence of cellular sets, Proc. Amer. Math. Soc. 75 (1979), no. 1, 171–176. MR 529236, DOI 10.1090/S0002-9939-1979-0529236-5
- Robert J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), no. 2, 277–298. MR 623564
- Robert J. Daverman, Products of cell-like decompositions, Topology Appl. 11 (1980), no. 2, 121–139. MR 572368, DOI 10.1016/0166-8641(80)90002-4 R. J. Daverman and D. J. Garity, Intrinsically $(n - 2)$-dimensional cellular decompositions of ${E^n}$ (preprint).
- Robert J. Daverman and D. Kriss Preston, Cell-like $1$-dimensional decompositions of $S^{3}$ are $4$-manifold factors, Houston J. Math. 6 (1980), no. 4, 491–502. MR 621744
- R. J. Daverman and W. H. Row, Cell-like $0$-dimensional decompositions of $S^{3}$ are $4$-manifold factors, Trans. Amer. Math. Soc. 254 (1979), 217–236. MR 539916, DOI 10.1090/S0002-9947-1979-0539916-8
- R. J. Daverman and J. J. Walsh, A nonshrinkable decomposition of $S^{n}$ involving a null sequence of cellular arcs, Trans. Amer. Math. Soc. 272 (1982), no. 2, 771–784. MR 662066, DOI 10.1090/S0002-9947-1982-0662066-7
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696 R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, (preprint); Notices Amer. Math. Soc. 24 (1977), A-649; Abstract #751-G5. D. L. Everett, Embedding and product theorems for decompositions spaces, Doctoral Thesis, University of Wisconsin, Madison, 1976. D. J. Garity, General position properties of homology manifolds, Doctoral Thesis, University of Wisconsin, Madison, 1980. —, General position properties related to the Disjoint Discs Property (preprint).
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no. 4, 495–552. MR 645403, DOI 10.1090/S0002-9904-1977-14321-8
- D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327–337. MR 161320, DOI 10.2307/1970548
- Frank Quinn, Ends of maps. I, Ann. of Math. (2) 110 (1979), no. 2, 275–331. MR 549490, DOI 10.2307/1971262
- David G. Wright, A decomposition of $E^{n}$ $(n\geq 3)$ into points and a null sequence of cellular sets, General Topology Appl. 10 (1979), no. 3, 297–304. MR 546103
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 833-838
- MSC: Primary 54B15; Secondary 57N15
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630031-6
- MathSciNet review: 630031