A note on Noetherian P.I. rings
HTML articles powered by AMS MathViewer
- by Amiram Braun
- Proc. Amer. Math. Soc. 83 (1981), 670-672
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630034-1
- PDF | Request permission
Abstract:
Let $R = F\{ {x_1}, \ldots ,{x_k}\}$ be an affine semiprime p.i. ring, Krull-$\dim (R) = 2$ and $F$ a central subfield. It is proved that $R$ is noetherian iff $R$ is a left (right) finite module over a commutative affine subring.References
- S. A. Amitsur, Identities and linear dependence, Israel J. Math. 22 (1975), no. 2, 127–137. MR 387341, DOI 10.1007/BF02760161
- Amiram Braun, Affine polynomial identity rings and their generalizations, J. Algebra 58 (1979), no. 2, 481–494. MR 540652, DOI 10.1016/0021-8693(79)90174-1
- Gérard Cauchon, Anneaux semi-premiers, noethériens, à identités polynômiales, Bull. Soc. Math. France 104 (1976), no. 1, 99–111. MR 407076
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Claudio Procesi, Rings with polynomial identities, Pure and Applied Mathematics, vol. 17, Marcel Dekker, Inc., New York, 1973. MR 0366968 L. Small, unpublished.
- William Schelter, Integral extensions of rings satisfying a polynomial identity, J. Algebra 40 (1976), no. 1, 245–257. MR 417238, DOI 10.1016/0021-8693(76)90095-8
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 670-672
- MSC: Primary 16A38; Secondary 16A33, 16A55
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630034-1
- MathSciNet review: 630034