Boundedness of maximal functions and singular integrals in weighted $L^{p}$ spaces
HTML articles powered by AMS MathViewer
- by José L. Rubio de Francia
- Proc. Amer. Math. Soc. 83 (1981), 673-679
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630035-3
- PDF | Request permission
Abstract:
Given a weight $w(x) > 0$ in ${{\mathbf {R}}^n}$, necessary and sufficient conditions are found for the boundedness of the Hardy-Littlewood maximal function and singular integral operators from ${L^p}(w)$ to some other weighted ${L^p}$ space. The dual question is also considered and partially answered.References
- A. Benedek, A.-P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356–365. MR 133653, DOI 10.1073/pnas.48.3.356
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Adriano M. Garsia, Topics in almost everywhere convergence, Lectures in Advanced Mathematics, No. 4, Markham Publishing Co., Chicago, Ill., 1970. MR 0261253
- John E. Gilbert, Nikišin-Stein theory and factorization with applications, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 233–267. MR 545313
- Paul Koosis, Moyennes quadratiques pondérées de fonctions périodiques et de leurs conjuguées harmoniques, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 4, A255–A257 (French, with English summary). MR 591744
- Bernard Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^{p}$, Astérisque, No. 11, Société Mathématique de France, Paris, 1974 (French). With an English summary. MR 0344931
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt, Weighted norm inequalities for classical operators, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR 545240
- José L. Rubio de Francia, Vector-valued inequalities for operators in $L^{p}$-spaces, Bull. London Math. Soc. 12 (1980), no. 3, 211–215. MR 572104, DOI 10.1112/blms/12.3.211
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 673-679
- MSC: Primary 42B20; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630035-3
- MathSciNet review: 630035