Lipschitz functions and spectral synthesis
HTML articles powered by AMS MathViewer
- by Sung Yung Lee
- Proc. Amer. Math. Soc. 83 (1981), 715-719
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630043-2
- PDF | Request permission
Abstract:
An $S$-set in the circle group $T$ is a closed subset $S$ of $T$ for which $\overline {j(S)} = k(S)$. We construct a non-$S$-set $S$ satisfying \[ \bigcup \limits _{\alpha > 0} {{{\operatorname {Lip} }_\alpha }(T) \cap k(S) \subset \overline {j(S)} .} \] Thus ${\operatorname {Lip} _\alpha }(T) \cap A(T)$ is not a big enough part of $A(T)$ to test the synthesizability of a given closed subset of $T$.References
- John J. Benedetto, Spectral synthesis, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1975. MR 0622037
- Jean-Pierre Kahane, Sur le théorème de Beurling-Pollard, Math. Scand. 21 (1967), 71–79 (1968) (French). MR 247361, DOI 10.7146/math.scand.a-10846
- J.-P. Kahane and Y. Katznelson, Contribution à deux problèmes, concernant les fonctions de la classe $A$, Israel J. Math. 1 (1963), 110–131 (French). MR 158281, DOI 10.1007/BF02759807
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 0160065
- Thomas Körner, A pseudofunction on a Helson set. I, Pseudofunctions and Helson sets, Astérisque, vol. 5, Soc. Math. France, Paris, 1973, pp. 3–224. MR 0404974
- Donald J. Newman, Some results in spectral synthesis, Duke Math. J. 27 (1960), 359–361. MR 123891
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 715-719
- MSC: Primary 43A45; Secondary 42A65
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630043-2
- MathSciNet review: 630043