SPECTRAL INCLUSION FOR DOUBLY COMMUTING SUBNORMAL n-TUPLES

RAUL E. CURTO

Abstract. Let \(S = (S_1, \ldots, S_n) \) be a doubly commuting \(n \)-tuple of subnormal operators on a Hilbert space \(\mathcal{H} \) and \(N = (N_1, \ldots, N_n) \) be its minimal normal extension acting on a Hilbert space \(\mathcal{K} \supseteq \mathcal{H} \). We show that \(\text{Sp}(S, \mathcal{H}) \supseteq \text{Sp}(N, \mathcal{K}) \) and \(\text{Sp}(S, \mathcal{H}) \subseteq \text{p.c.h.}(\text{Sp}(N, \mathcal{K})) \), where \(\text{Sp} \) denotes Taylor spectrum and p.c.h. polynomially convex hull.

1. Introduction. Let \(S \) be a subnormal operator on a Hilbert space \(\mathcal{H} \) and \(N \) be its minimal normal extension to a Hilbert space \(\mathcal{K} \supseteq \mathcal{H} \). A well-known result of Halmos [5] asserts that \(\sigma(S) \supseteq \sigma(N) \), where \(\sigma \) denotes spectrum. Bram then proved in [2] that \(\sigma(S) \subseteq \text{p.c.h.}(\sigma(N)) \), the polynomially convex hull of \(\sigma(N) \). (He actually proved more: if \(U \) is any bounded component of \(\mathbb{C} \setminus \sigma(N) \), then \(U \cap \sigma(S) = \emptyset \) or \(U \subseteq \sigma(S) \).

The question arises as to whether the spectral inclusion holds for commuting \(n \)-tuples \(S = (S_1, \ldots, S_n) \) of subnormal operators on \(\mathcal{H} \). A first comment is in order: not every such \(n \)-tuple has a commuting normal extension, i.e., it is not always possible to find a commuting \(n \)-tuple \(N = (N_1, \ldots, N_n) \) of normal operators on a Hilbert space \(\mathcal{K} \supseteq \mathcal{H} \) such that \(N_i \mathcal{K} \subset \mathcal{K} \) and \(N_i|_{\mathcal{H}} = S_i \) for all \(i = 1, \ldots, n \) (see [8] for an example). There are a number of conditions that guarantee the existence of such an extension (see for instance [1, 6, 7 and 9]). We shall call the \(n \)-tuple \(S \) subnormal in case it admits a commuting normal extension. It follows from Bram's paper [2] (combining the corollary on p. 88 with Theorem 8) that any doubly commuting \(n \)-tuple \(S = (S_1, \ldots, S_n) \) (i.e., \(S_i S_j = S_j S_i \) for all \(i, j \) and \(S_i S_j^* = S_j^* S_i \) for \(i \neq j \)) of subnormal operators is subnormal. (Ito [6] has extended this further.) Also, it is clear that a subnormal \(n \)-tuple has a unique, up to isometric isomorphism, minimal normal extension. The \(n \)-tuples to be considered are, therefore, the subnormal ones. We must now agree on the right notion of joint spectrum. First, we need some notation. For an \(n \)-tuple \(T = (T_1, \ldots, T_n) \) of operators on \(\mathcal{K} \), let \(\sigma_d(T) \) denote the right spectrum of \(T \), that is, \(\sigma_d(T) = \{ \lambda \in \mathbb{C}^n : \Sigma_{i=1}^n (T_i - \lambda_i)^*(T_i - \lambda_i)^* \text{ is not invertible} \} \). If \(T \) is commuting and \(\mathcal{A} \) is a Banach algebra containing the \(T_i \)'s in its center, let \(\sigma_d(T) \) and \(\text{Sp}(T, \mathcal{K}) \) denote the spectra of \(T \) with respect to \(\mathcal{A} \) and \(\mathcal{K} \), respectively, i.e., \(\sigma_d(T) = \{ \lambda \in \mathbb{C}^n : \Sigma_{i=1}^n (T_i - \lambda_i)A_i = I \text{ cannot be solved for } A_i \in \mathcal{A} \} \). (For a definition of \(\text{Sp} \) see [4 or 12].)
Janas has shown in [7] that if S is subnormal with minimal normal extension N and \mathcal{A} is a maximal abelian Banach algebra containing the S_i's, then $\sigma_S(N) \supset \sigma(N)$. (As it turns out, there is universal agreement on the right notion of spectrum for a normal n-tuple, since $\sigma(N) = \sigma^{(N)}(N) = \sigma^B(N)$ for any abelian C*-algebra B containing the N_i's.) It is a result of Taylor [12, Lemma 2.1] that $\sigma_N(T, \mathcal{C}) \subset \sigma_S(T)$ for any Banach algebra \mathcal{A} whose center contains the T_i's, so that $\sigma_N(S, \mathcal{C}) \supset \sigma(N, \mathcal{C})$ is perhaps the appropriate inclusion to study. One could look for joint spectra smaller than σ, like those considered by Słodkowski [11]. There are easy examples that show that $\sigma_{n,k}$ ($k < n$) will not do; on the other hand, $\sigma_{n,0} = \sigma$ for a doubly commuting subnormal n-tuple [4, Corollary 3.8]. (The notation in the last sentence is from [11].) We have posed in [4] the following question: Does $\sigma_N(S, \mathcal{C}) \supset \sigma(N, \mathcal{C})$? In this paper we give an affirmative answer where S is doubly commuting. Using a result of Janas we also prove that $\sigma_N(S, \mathcal{C}) \subset \text{p.c.h.}(\sigma_N(N, \mathcal{C}))$. Our proof is based on a theorem of Bram's on the commutant of the C*-algebra generated by a subnormal operator, a basic estimate for the left spectrum of an n-tuple, the functional calculus for normal n-tuples and our characterization of σ for doubly commuting n-tuples of hyponormal operators (as σ).

2. A basic fact about the left spectrum. Let $T = (T_1, \ldots, T_n)$ be an n-tuple (not necessarily commuting) of operators \mathcal{C} and $\sigma_l(T)$ be the left spectrum of T, that is,

$$\sigma_l(T) = \left\{ \lambda \in \mathbb{C}^n : \sum_{i=1}^n (T_i - \lambda_i)^*(T_i - \lambda_i) \text{ is not invertible} \right\}.$$

Let

$$\delta(T) = \inf \left\{ \|Tx\| = \left(\sum_{i=1}^n \|T_ix\|^2 \right)^{1/2} : \|x\| = 1 \right\}$$

and

$$m_l(T) = \inf \left\{ |\lambda| = \left(\sum_{i=1}^n |\lambda_i|^2 \right)^{1/2} : \lambda \in \sigma_l(T) \right\}.$$

The following lemma is probably well known among the specialists. We include a proof for the sake of completeness (see [10] for a different proof).

Lemma 1. For an arbitrary n-tuple T, $m_l(T) > \delta(T)$.

Proof. Let $\lambda \in \mathbb{C}^n$ and $x \in \mathcal{C}$, $\|x\| = 1$. Then

$$\sum_{i=1}^n \|(T_i - \lambda_i)x\|^2 = \sum_{i=1}^n \|T_ix\|^2 + \sum_{i=1}^n |\lambda_i|^2 - 2 \sum_{i=1}^n \text{Re}(T_ix, \lambda_ix)$$

and

$$\left| \sum_{i=1}^n \text{Re}(T_ix, \lambda_ix) \right| \leq \sum_{i=1}^n |\lambda_i| \|T_ix\| \leq \left(\sum_{i=1}^n |\lambda_i|^2 \right)^{1/2} \left(\sum_{i=1}^n \|T_ix\|^2 \right)^{1/2}.$$
Thus,

$$\sum_{i=1}^{n} \| (T_i - \lambda_i)x \|^2 > \left[\left(\sum_{i=1}^{n} \| T_i x \|^2 \right)^{1/2} - \left(\sum_{i=1}^{n} |\lambda_i|^2 \right)^{1/2} \right]^2.$$

Therefore, if $|\lambda| < \delta(T)$ then $\sum_{i=1}^{n} \| (T_i - \lambda_i)x \|^2 > (\delta(T) - |\lambda|)^2$, so that $\lambda \notin \sigma_l(T)$, from which the result follows.

Lemma 2. Let N be a commuting n-tuple of normal operators. Then $m_l(N) = \delta(N)$.

Proof. $C^*(N_1, \ldots, N_n) = C(\sigma_l(N))$.

3. *Brann's commutant theorem.*

Lemma 2 (Theorem 8 in [2]; see also [3, Chapter IV]). Let S be a subnormal operator on \mathcal{K} with minimal normal extension N on $\mathcal{K} \supset \mathcal{K}$. Let $C^*(N)^\prime$, $C^*(S)^\prime$ and $C^*(P)^\prime$ denote the commutants of the C^*-algebras generated by N, S and the projection P of \mathcal{K} onto \mathcal{K} ($P = P_\mathcal{K}$). The map

$$C^*(N)^\prime \cap C^*(P)^\prime \rightarrow C^*(S)^\prime,$$

is an isometric \ast-isomorphism. Moreover, if $Q \in C^*(S)^\prime$ is a projection, then $\Phi^{-1}(Q)$ is the projection on \mathcal{K} whose range is the closed linear span of the family $\{N^*x : x \in Q\mathcal{K}, \ n > 0\}$, so that $N|_{\Phi^{-1}(Q)}$ is the minimal normal extension of $S|_Q$.

3. The main result. The following lemma is the keystone for our proof of the spectral inclusion.

Lemma 4. Let S be a subnormal operator on \mathcal{K} with minimal normal extension N on $\mathcal{K} \supset \mathcal{K}$. Let τ be a positive operator in $C^*(S)^\prime$ and $K = \tau^{-1}(\tau)$ the (positive) operator given by Bram's theorem. Assume that $0 \notin \sigma_l(S, \mathcal{K})$. Then $0 \notin \sigma_l(N, \mathcal{K})$.

Proof. By definition of σ_l, we know that $SS^* + \tau^2$ is invertible, say $SS^* + \tau^2 > 3\varepsilon$ for some $\varepsilon > 0$. Let the positive numbers t_k and projections $Q_k \in C^*(S)^\prime$ $(k = 1, \ldots, m)$ be chosen so that

(i) $\sum_{k=1}^{m} Q_k = I$,

(ii) $Q_k Q_l = 0$ if $k \neq l$, and

(iii) $\| H^2 - \sum_{k=1}^{m} t_k^2 Q_k \| < \varepsilon$.

Then

$$SS^* + \sum_{k=1}^{m} t_k^2 Q_k > 2\varepsilon.$$

Since the ranges of the Q_k's reduce S (all k), are pairwise orthogonal and span \mathcal{K}, we can define $S_k = S|_{Q_k\mathcal{K}}$ acting on $Q_k\mathcal{K}$ and write (\ast) as

$$\bigoplus_{k=1}^{m} (S_k S_k^* + t_k^2) > 2\varepsilon.$$

Thus, for each k, $S_k S_k^* + t_k^2 > 2\varepsilon$, or $\| S_k^* x \|^2 + t_k^2 > 2\varepsilon$, $x \in Q_k\mathcal{K}$, $\| x \| = 1$. In the notation of Lemma 1 this is $\delta(S_k^*, t_k) > \sqrt{2\varepsilon}$, so that $m_l(S_k^*, t_k) > \sqrt{2\varepsilon}$, too.

Now, by the projection property for the left spectrum,

$$\sigma_l(S_k^*, t_k) = \sigma_l(S_k^*) \times \{ t_k \} = \sigma_l(S_k) \times \{ t_k \}$$
(the horizontal bar denoting complex conjugation). Of course, \(\sigma_r(S_k) = \sigma(S_k) \), because \(S_k \) is subnormal. Then

\[
\sigma(S_k^*; t_k) = \sigma(S_k) \times \{ t_k \} \cup \sigma(N_k) \times \{ t_k \},
\]

by the spectral inclusion theorem for subnormal operators and the fact that \(N_k = N|_{\Phi^{-1}(Q_k)\mathbb{K}} \) is the minimal normal extension of \(S_k \). Therefore, \(m_r(N_k, t_k) > m_r(S_k^*, t_k) > \sqrt{2e} \). By Lemma 2, however, \(\delta(N_k, t_k) = m_r(N_k, t_k) \), so that \(\| N_k x \| ^2 + t_k^2 > 2e, x \in \Phi^{-1}(Q_k)\mathbb{K}, \| x \| = 1. \)

Therefore \(\bigoplus_{k=1}^{n} (N_k^* N_k + t_k^2) > 2e \), or

\[
N^* N + \sum_{k=1}^{m} t_k^2 \Phi^{-1}(Q_k) > 2e.
\]

From (iii) above and the fact that \(\Phi \) is an isometry, we get

\[
\left\| K^2 - \sum_{k=1}^{m} t_k^2 \Phi^{-1}(Q_k) \right\| < e.
\]

This last equation combined with (**) gives \(N^* N + K^2 > e \), as desired.

5. The spectral inclusion theorem. We need one more lemma before we can prove our theorem.

Lemma 5 (Corollary 3.8 in [4]). Let \(T = (T_1, \ldots, T_n) \) be a doubly commuting n-tuple of hyponormal operators on \(\mathbb{K} \). Then \(\text{Sp}(T, \mathbb{K}) = \sigma_r(T) \).

Theorem 1 (spectral inclusion). Let \(S = (S_1, \ldots, S_n) \) be a doubly commuting subnormal n-tuple on \(\mathbb{K} \) with minimal normal extension \(N = (N_1, \ldots, N_n) \) on \(\mathbb{K} \supset \mathbb{K} \). Then \(\text{Sp}(S, \mathbb{K}) \supset \text{Sp}(N, \mathbb{K}) \).

Proof. Assume \(n > 2 \). As in the one-variable case, it is enough to show that \(0 \notin \text{Sp}(S, \mathbb{K}) \) implies \(0 \notin \text{Sp}(N, \mathbb{K}) \). Now, if \(0 \notin \text{Sp}(S, \mathbb{K}) \) and \(H = (\Sigma_{i=2}^{n} S_i S_i^*)^{1/2} \), then \((S_1, H) \) is right invertible. Let \(T_1^{(1)} = \text{m.e.e.}(S_1) \) acting on \(\mathbb{K}^{(1)} \subset \mathbb{K} \) and \(\Phi_1: C^*(T_1^{(1)})' \cap C^*(P_2)' \to C^*(S_1)' \) be Bram's isomorphism. Let \(T_i^{(1)} = \Phi_1^{-1}(S_i), i = 2, \ldots, n. \) Notice that \(\Phi_1^{-1}(H) = (\Sigma_{i=2}^{n} T_i^{(1)} T_i^{(1)*})^{1/2} \) and that each \(T_i^{(1)} \) is subnormal; actually, \(T_i^{(1)} = N_i |_{\mathbb{K}^{(1)}} \). By Lemma 4, \((T_1^{(1)}, \Phi_1^{-1}(H)) \) is right invertible, so that \(T_1^{(1)} = (T_1^{(1)}, \ldots, T_n^{(1)}) \) is right invertible, or \(0 \notin \text{Sp}(T^{(1)}, \mathbb{K}^{(1)}) \), by Lemma 5.

We can now extend \(T_2^{(1)} \) to its minimal norm extension \(T_2^{(2)} \) on \(\mathbb{K}^{(2)} \subset \mathbb{K} \) and repeat the argument so that \(0 \notin \text{Sp}(T^{(2)}, \mathbb{K}^{(2)}) \). We can continue this process until \(T_n^{(n-1)} \) has been extended. Finally, it is clear that \(\mathbb{K}^{(n)} = \mathbb{K} \) and \(T^{(n)} = N, \) so that \(0 \notin \text{Sp}(N, \mathbb{K}) \), as desired.

Remark. With the notation as in the preceding proof, notice that we actually proved that

\[\text{Sp}(N, \mathbb{K}) \subset \text{Sp}(T^{(n-1)}, \mathbb{K}^{(n-1)}) \subset \cdots \subset \text{Sp}(T^{(1)}, \mathbb{K}^{(1)}) \subset \text{Sp}(S, \mathbb{K}). \]

Theorem 2. Let \(S = (S_1, \ldots, S_n) \) be a subnormal n-tuple on \(\mathbb{K} \) (not necessarily doubly commuting) and \(N = (N_1, \ldots, N_n) \) be its minimal normal extension acting on \(\mathbb{K} \supset \mathbb{K} \). Then \(\text{Sp}(S, \mathbb{K}) \subset \text{p.c.h.}(\text{Sp}(N, \mathbb{K})). \)
Proof (see Janas [7, Corollary to Theorem 5]). Let \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \text{Sp}(S, \mathcal{H}) \) and \(P(z_1, \ldots, z_n) \) be a polynomial. Then \(P(\lambda) \in P(\text{Sp}(S, \mathcal{H})) = \text{Sp}(P(S), \mathcal{H}) \), by the Spectral Mapping Theorem for Taylor spectrum [13, Theorem 4.8], so that

\[
|P(\lambda)| \leq \sup\{|z|: z \in \sigma(P(S))\} = ||P(S)|| \leq ||P(N)||
\]

\[
= \sup\{|z|: z \in \sigma(P(N))\} = \sup\{|P(z)|: z \in \text{Sp}(N, \mathcal{H})\}.
\]

Thus \(\lambda \in \text{p.c.h.}(\text{Sp}(N, \mathcal{H})) \).

Corollary. Let \(S \) be a doubly commuting subnormal \(n \)-tuple on \(\mathcal{H} \) with minimal normal extension \(N \) on \(\mathcal{H} \supseteq \mathcal{K} \). Assume that \(\text{Sp}(S, \mathcal{K}) \) is polynomially convex. Then \(\text{Sp}(S, \mathcal{H}) = \text{p.c.h.}(\text{Sp}(N, \mathcal{K})) \).

Acknowledgement. The author wishes to thank J. Bunce and N. Salinas for many helpful conversations. This paper was written while the author was at the University of Kansas.

References

10. N. Salinas, Quasitriangular extensions and problems on joint quasitriangularity (preprint).