On the divergence of extension procedures in isol theory
HTML articles powered by AMS MathViewer
- by T. G. McLaughlin
- Proc. Amer. Math. Soc. 83 (1981), 769-773
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630052-3
- PDF | Request permission
Abstract:
We show that the Myhill and Nerode extensions begin to disagree on the domain of the Nerode extension at a point in the arithmetical hierarchy $\leqslant \Delta _3^0$. This disagreement, at level $\Delta _3^0$, goes hand in hand with a certain way in which the Myhill extension fails, at $\Delta _3^0$, to commute with composition.References
- J. Myhill, Recursive equivalence types and combinatorial functions, Bull. Amer. Math. Soc. 64 (1958), 373–376. MR 101194, DOI 10.1090/S0002-9904-1958-10241-4
- Anil Nerode, Extensions to isols, Ann. of Math. (2) 73 (1961), 362–403. MR 131363, DOI 10.2307/1970338
- Erik Ellentuck, The positive properties of isolic integers, J. Symbolic Logic 37 (1972), 114–132. MR 392536, DOI 10.2307/2272554
- Erik Ellentuck, On the degrees of universal regressive isols, Math. Scand. 32 (1973), 145–164 (1974). MR 332462, DOI 10.7146/math.scand.a-11451
- Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR 0051790
- J. C. E. Dekker, Infinite series of isols, Proc. Sympos. Pure Math., Vol. V, American Mathematical Society, Providence, R.I., 1962, pp. 77–96. MR 0142447
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 769-773
- MSC: Primary 03D50
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630052-3
- MathSciNet review: 630052