An inequality concerning three fundamental dimensions of paracompact $\sigma$-spaces
HTML articles powered by AMS MathViewer
- by Shinpei Oka
- Proc. Amer. Math. Soc. 83 (1981), 790-792
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630056-0
- PDF | Request permission
Abstract:
It is shown that Ind ${\text {Ind}}X \leqslant \dim X + {\text {ind}}X$ for any nonempty paracompact $\sigma$-space.References
- Carlos J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16. MR 188982, DOI 10.2140/pjm.1966.17.1
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696 I. M. Leǐbo, On the equality of dimensions for closed images of metric spaces, Soviet Math. Dokl. 15 (1974), 835-839. —, On closed images of metric spaces, Soviet Math. Dokl. 16 (1975), 1292-1295.
- Shinpei Oka, Dimension of finite unions of metric spaces, Math. Japon. 24 (1979/80), no. 4, 351–362. MR 557465 —, A generalization of free $L$-spaces, Tsukuba J. Math, (to appear).
- Akihiro Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1968), 236–254 (1968). MR 230283
- B. A. Pasynkov, On the spectral decomosition of topological spaces, Mat. Sb. (N.S.) 66 (108) (1965), 35–79 (Russian). MR 0172236 V. V. Filippov, On bicompacta with noncoinciding inductive dimensions, Soviet Math. Dokl. 11 (1970), 635-638.
- Keiô Nagami, A normal space $Z$ with $\textrm {ind}\,Z=0$, $\textrm {dim}\, Z=1$, $\textrm {Ind}\,Z=2$, J. Math. Soc. Japan 18 (1966), 158–165. MR 199842, DOI 10.2969/jmsj/01820158
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 83 (1981), 790-792
- MSC: Primary 54F45; Secondary 54E18
- DOI: https://doi.org/10.1090/S0002-9939-1981-0630056-0
- MathSciNet review: 630056