View-obstruction problems. II
HTML articles powered by AMS MathViewer
- by T. W. Cusick
- Proc. Amer. Math. Soc. 84 (1982), 25-28
- DOI: https://doi.org/10.1090/S0002-9939-1982-0633270-4
- PDF | Request permission
Abstract:
Let ${S^n}$ denote the region $0 < {x_i} < \infty (i = 1,2, \ldots ,n)$ of $n$-dimensional Euclidean space ${E^n}$. Suppose $C$ is a closed convex body in ${E^n}$ which contains the origin as an interior point. Define $\alpha C$ for each real number $\alpha \geqslant 0$ to be the magnification of $C$ by the factor $\alpha$ and define $C + ({m_1}, \ldots ,{m_n})$ for each point $({m_1}, \ldots ,{m_n})$ in ${E^n}$ to be the translation of $C$ by the vector $({m_1}, \ldots ,{m_n})$. Define the point set $\Delta (C,\alpha )$ by $\Delta (C,\alpha ) = \{ \alpha C + ({m_1} + \frac {1} {2}, \ldots ,{m_n} + \frac {1} {2}):{m_1}, \ldots ,{m_n}$ nonnegative integers}. The view-obstruction problem for $C$ is the problem of finding the constant $K(C)$ defined to be the lower bound of those $\alpha$ such that any half-line $L$ given by ${x_i} = {a_i}t(i = 1,2, \ldots ,n)$, where the ${a_i}(1 \leqslant i \leqslant n)$ are positive real numbers, and the parameter $t$ runs through $[0,\infty )$, intersects $\Delta (C,\alpha )$. The paper considers the case where $C$ is the $n$-dimensional cube with side 1, and in this case the constant $K(C)$ is known for $n \leqslant 3$. The paper gives a new proof for the case $n = 3$. Unlike earlier proofs, this one could be extended to study the cases with $n \geqslant 4$.References
- U. Betke and J. M. Wills, Untere Schranken für zwei diophantische Approximations-Funktionen, Monatsh. Math. 76 (1972), 214–217 (German). MR 313194, DOI 10.1007/BF01322924
- T. W. Cusick, View-obstruction problems, Aequationes Math. 9 (1973), 165–170. MR 327665, DOI 10.1007/BF01832623
- T. W. Cusick, View-obstruction problems in $n$-dimensional geometry, J. Combinatorial Theory Ser. A 16 (1974), 1–11. MR 332539, DOI 10.1016/0097-3165(74)90066-1
- I. J. Schoenberg, Extremum problems for the motions of a billiard ball. II. The $L_{\infty }$ norm, Indag. Math. 38 (1976), no. 3, 263–279. Nederl. Akad. Wetensch. Proc. Ser. A 79. MR 0405247
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 25-28
- MSC: Primary 10F10; Secondary 52A43, 52A45
- DOI: https://doi.org/10.1090/S0002-9939-1982-0633270-4
- MathSciNet review: 633270