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SUBHARMONIC FUNCTIONS OUTSIDE A COMPACT SET IN R"

VICTOR ANANDAM

Abstract. Let m be a subharmonic function defined outside a compact set in R .

Then u is of the form u{x) = s(x) — a log|;c| outside a disc where s(x) is a

nonconstant subharmonic function in R2 and a > 0. Some applications and the

analogues in R", n > 3, are given.

1. Introduction. Let u be a subharmonic function defined outside a compact set

in R2. We prove that outside a disc u is of the form u(x) = s(x) — a log|x| where

s(x) is a nonconstant subharmonic function in R2 and a > 0.

From the above decomposition, it is easily seen that p(u) = \im(M(r, u)/log r)

always exists where M(r, u) is the mean value of u on |x| = r. We show that there

exists a (nonharmonic) subharmonic function v in R2 such that v = u outside a

disc if and only if p(u) > 0. This result is implicit in M. Brelot [1] and it is proved

here as a simple application of the above decomposition of u.

In particular, defining the order of u as ord u = ord s, we note that there exists a

(nonharmonic) subharmonic function v in R2 such that v = u outside a disc in the

following two cases: (i) u is of nonintegral order, and (ii) u is lower bounded but

not bounded.

Finally we state some of the analogous results in R", « > 3.

2. Subharmonic functions outside a disc in R2.

Theorem 1. Suppose that u is a subharmonic function defined outside a compact set

in R2. Then there exist a nonconstant subharmonic function s in R2 and a constant

a > 0 such that u(x) = s(x) — a log|x| outside a disc.

Proof. Let u be finite continuous in a neighbourhood of |x| = R > 1 and

subharmonic in |x| > Rq (R0 < R). Let r > R and Dru denote the Dirichlet

solution in |x| < r with boundary value u.

Choose a > 0 large so that Dru + a log r > u + a log R on |x| = R. This

implies that u(x) + a log|x| < Dr(u + a log|x|) in R < |x| < r.

Hence if s(x) is the function u(x) + a log|x| in |x| > r extended by

Dr(u + a log|x|) in |x| < r, s(x) is subharmonic in R2 and u(x) = s(x) — a log|x|

outside a disc. Moreover s can always be chosen as a nonconstant function since a

is an arbitrary large positive number.
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Remarks. (1) Since lim(M(r, s)/log r) exists and equals the total mass associated

with s in the local Riesz representation, p(u) = lim(A/(r, w)/log r) always exists

and -oo < p(u) < oo.

(2) When p(u) < oo, the least harmonic majorant of u outside a disc is of the

form p(u) log|x| + a harmonic function 77(x) in R2 + a bounded harmonic func-

tion b(x).

(3) With the representation of u as in Theorem 1, we define the order of u as

ord u = ord s. (For the definition of the order of a subharmonic function in R",

« > 2, we refer for instance to p. 143 of W. K. Hayman and P. B. Kennedy [2].)

Note that ord u is independent of the representation. For, if u = sx — a, log|x| is

another representation of u outside a disc, then ord s = ord(s + a, log|x|) =

ord(y, + a log|x|) = ord sx.

3. Subharmonic extension in R .

Terminology. In this section we denote by m a subharmonic function defined

outside a compact set in R2. We say that a subharmonic function V in R2 extends u

if V = u outside a disc.

Now a part of Théorème 2 of M. Brelot [1] can be stated as follows:

Let u be a subharmonic function defined outside a disc in R2. Then V = lim Dru

exists locally uniformly, and V = oo if and only if the flux at infinity of m is > 0.

As a consequence, for sufficiently large r, Dru extended by « is a (nonharmonic)

subharmonic function in R2 if and only if flux « > 0. Essentially the same result is

obtained below as a simple application of Theroem 1.

Theorem 2. Given u there exists a (nonharmonic) subharmonic function in R2

extending u if and only if p(u) > 0.

Proof. If there is a function q (nonharmonic) subharmonic in R2 such that

q = u outside a disc, then clearly p(u) = lim(M(r, q)/\o% r) > 0 since q is not

harmonic.

Conversely, let u(x) = s(x) — a log|x| be a representation of u. Let X be the

measure associated with s. Since p(u) > 0, ||À|| > a. Choose a compact K such that

X(K) > a.

Write s = sx + s2 where s2 is the lograithmic potential corresponding to À

restricted to K and sx is a subharmonic function in R2 with associated measure X

restricted to R2 - K.

Since s2(x) — X(K) log|x| -> 0 as |x| -» oo, Dr(s2 — a log|x|) —» oo locally uni-

formly as r -> oo. Consequently Dru —» oo locally uniformly.

Hence, for large r, Dru > u on |x| = R which implies that Dru > u in R < |x| <

r. Define the function q as Dru in |x| < r extended by u in |x| > r. Then q is a

subharmonic function in R2 extending u.

Corollary 1. Let u be lower bounded but not bounded in \x\ > r. Then there

exists a (nonharmonic) subharmonic function in R2 extending u.

Proof. Let u > m outside a disc. Then p(u) > 0. We show now that p(u) > 0

and hence the corollary follows from the above theorem.
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For that, suppose p(ü) = 0. Then if h is the least harmonic majorant of u outside

a disc, h is of the form h(x) = a harmonic function 77(x) in R2 + a bounded

harmonic function b(x). (See Remark 2 above.)

This implies that m < u(x) < 77(x) + b(x) outside a disc and hence 77 is a

constant, which in turn implies that u is bounded, a contradiction.

Corollary 2. Let u be of finite nonintegral order. Then there exists a (non-

harmonic) subharmonic function in R2 extending u.

Proof. In this case we show that p(u) = oo and hence the corollary follows from

Theorem 2.

For this, suppose that p(u) < oo. Then the least harmonic majorant of u outside

a disc is of the form p(u) log|x| + a harmonic 77(x) in R2 + a bounded harmonic

function b(x).

Let u(x) = s(x) — a log|x| be a decomposition of u. Then from s — a log|x| <

p(u) log|x| + 77 + b outside a disc, it follows that ord s = ord 77.

Since ord u ( = ord s) is finite and 77 is harmonic in R2, it now follows (for

instance from Theorem 2.1.5 of W. K. Hayman and P. B. Kennedy [2]) that ord u

is an integer, a contradiction.

4. In higher dimensions. We state here two theorems in R", n > 3, analogous to

those proved earlier in R2.

Theorem 1'. Let u be a subharmonic function defined in \x\ > R /« R", « > 3. Let

r > R. Then there exist a nonconstant subharmonic function s(x) in R" and a constant

a < 0 such that u(x) = s(x) — alxl2-" in \x\ > r.

Theorem 2'. Let u be a subharmonic function defined in |x| > R in R", « > 3, with

associated measure p. Let r > R. Then the following are equivalent:

(i) lim M(r, u) = oo.

(ii) f? \y\2~" dp(y) « divergent.

(iii) There exists a subharmonic function v in R", not majorized by any harmonic

function, extending u.
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