An extremal vector-valued $L^{p}$-function taking no extremal vectors as values
HTML articles powered by AMS MathViewer
- by Peter Greim
- Proc. Amer. Math. Soc. 84 (1982), 65-68
- DOI: https://doi.org/10.1090/S0002-9939-1982-0633279-0
- PDF | Request permission
Abstract:
We give an example of a nonseparable Banach space $V$ and a function $x$ on [0, 1] with values in the unit sphere of $V$ that is an extreme point of the unit balls of all Bochner ${L^p}$-spaces ${L^p}(\lambda ,V)$, $1 < p \leqslant \infty$, $\lambda$ Lebesgue measure, though none of its values is an extreme point of the unit ball of $V$. This shows that a characterization of the extremal elements in ${L^p}(\lambda ,V)$ for separable $V$, given by J. A. Johnson, does not hold in general.References
- Ehrhard Behrends, Rainer Danckwerts, Richard Evans, Silke Göbel, Peter Greim, Konrad Meyfarth, and Winfried Müller, $L^{p}$-structure in real Banach spaces, Lecture Notes in Mathematics, Vol. 613, Springer-Verlag, Berlin-New York, 1977. MR 0626051, DOI 10.1007/BFb0068175
- R. M. Blumenthal, Joram Lindenstrauss, and R. R. Phelps, Extreme operators into $C(K)$, Pacific J. Math. 15 (1965), 747–756. MR 209862, DOI 10.2140/pjm.1965.15.747
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Jerry A. Johnson, Extreme measurable selections, Proc. Amer. Math. Soc. 44 (1974), 107–112. MR 341068, DOI 10.1090/S0002-9939-1974-0341068-5
- Kondagunta Sundaresan, Extreme points of the unit cell in Lebesgue-Bochner function spaces, Colloq. Math. 22 (1970), 111–119. MR 276753, DOI 10.4064/cm-22-1-111-119
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 65-68
- MSC: Primary 46E40; Secondary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0633279-0
- MathSciNet review: 633279