DERIVATIVES OF H^p FUNCTIONS

KNUT ØYMA AND SERGE ROOKSHIN

Abstract. We prove that if $\{z_n\}$ is uniformly separated and $f \in H^p$, then
$\left\{ f^{(k)}(z_n)(1 - |z_n|^2)^{k+1/p} \right\}_{n=1}^\infty \in \ell^p$ for $k = 1, 2, \ldots$.

We give a simple proof of

Lemma. Let $\{z_n\}$ be uniformly separated and $f \in H^p$. For $k = 1, 2, \ldots$ we have
$\left\{ f^{(k)}(z_n)(1 - |z_n|^2)^{k+1/p} \right\}_{n=1}^\infty \subset \ell^p$.

H^p is the Hardy space of the unit disc D. A sequence $\{z_n\} \subset D$ is called
uniformly separated if
$$\inf_n \prod_{m \neq n} \left| \frac{z_n - z_m}{1 - \overline{z}_n z_m} \right| > 0.$$

A technical proof of the lemma was given in [2]. There it was also proved that
every ℓ^p sequence is obtained in this way. When [2] was published, the result was
already known in the Soviet Union (see, for instance, F. A. Shamoian’s paper [3]).
Inspired by this paper we prove the lemma.

For small τ let $D_n = \{z : |z - z_n| < \tau(1 - |z_n|)\}$. A simple computation using the
pseudohyperbolic metric $\varrho(a, b) = |(a - b)/(1 - \overline{a}b)|$ proves that $z_n^* \in D_n \Rightarrow \{z_n^*\}$
is uniformly separated. By Cauchy’s formula
$$|f^{(k)}(z_n)| = \left| \frac{k!}{2\pi i} \int_{\partial D_n} \frac{f(\xi)}{(\xi - z_n)^{k+1}} d\xi \right| \leq A(1 - |z_n|^2)^{-k} \max_{\xi \in D_n} |f(\xi)|$$
$$= A(1 - |z_n|^2)^{-k} |f(z_n^*)|.$$

Hence
$$|f^{(k)}(z_n)(1 - |z_n|^2)^{k+1/p}| \leq A |f(z_n^*)|(1 - |z_n|^2)^{1/p}$$
$$\leq A \cdot B |f(z_n^*)|(1 - |z_n^*|^2)^{1/p}$$

where B is seen to be independent of n. Since $\{z_n^*\}$ is uniformly separated, the
lemma follows from the well-known interpolation theorem of Shapiro and Shields [1].

Received by the editors January 29, 1981.
1980 Mathematics Subject Classification. Primary 30E05; Secondary 30D55.
Key words and phrases. Uniformly separated, H^p functions.

© 1982 American Mathematical Society
0002-9939/82/0000-0022/$01.50
97

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
REFERENCES

DEPARTMENT OF MATHEMATICS, AGDER DISTRIKSHOGSKOLE, KRISTIANSAND, NORWAY

DEPARTMENT OF MATHEMATICS, TEACHERS TRAINING COLLEGE, LENINGRAD, U.S.S.R.