Killing vector fields on complete Riemannian manifolds
Author:
Shinsuke Yorozu
Journal:
Proc. Amer. Math. Soc. 84 (1982), 115-120
MSC:
Primary 53C20
DOI:
https://doi.org/10.1090/S0002-9939-1982-0633291-1
MathSciNet review:
633291
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We discuss Killing vector fields with finite global norms on complete Riemannian manifolds whose Ricci curvatures are nonpositive or negative.
- [1] Aldo Andreotti and Edoardo Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81–130. MR 175148
- [2]
H. Kitahara, Non-existence of non-trivial
-harmonic
-forms on a complete foliated riemannian manifold, Trans. Amer. Math. Soc. 262 (1980), 429-435.
- [3] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974
- [4] G. de Rham, Variétés différentiables, Hermann, Paris, 1955.
- [5] Shinsuke Yorozu, Holomorphic vector fields on complete Kähler manifolds, Ann. Sci. Kanazawa Univ. 17 (1980), 17–21 (1981). MR 621024
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20
Retrieve articles in all journals with MSC: 53C20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1982-0633291-1
Keywords:
Complete Riemannian manifold,
Ricci curvature,
Killing vector field
Article copyright:
© Copyright 1982
American Mathematical Society