Dihedral algebras are cyclic
HTML articles powered by AMS MathViewer
- by Louis H. Rowen and David J. Saltman
- Proc. Amer. Math. Soc. 84 (1982), 162-164
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637160-2
- PDF | Request permission
Abstract:
Any central simple algebra of degree $n$ split by a Galois extension with dihedral Galois group of degree $2n$ is, in fact, a cyclic algebra. We assume that the centers of these algebras contain a primitive $n$th root of unity.References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
- A. A. Albert, A note on normal division algebras of prime degree, Bull. Amer. Math. Soc. 44 (1938), no. 10, 649–652. MR 1563842, DOI 10.1090/S0002-9904-1938-06831-0
- Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
- Robert L. Snider, Is the Brauer group generated by cyclic algebras?, Ring theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978) Lecture Notes in Math., vol. 734, Springer, Berlin, 1979, pp. 279–301. MR 548134
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 162-164
- MSC: Primary 16A39; Secondary 12E15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637160-2
- MathSciNet review: 637160