Strict local rings
HTML articles powered by AMS MathViewer
- by J. Herzog
- Proc. Amer. Math. Soc. 84 (1982), 165-172
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637161-4
- PDF | Request permission
Abstract:
In this paper we introduce the notion of a strict local ring. A local Cohen-Macaulay ring $(B,m)$ is called strict if, whenever a local ring $(A,n)$ specializes by a regular sequence to $B$, then the associated graded ring ${\text {g}}{{\text {r}}_n}(A)$ is Cohen-Macaulay. We show that an artinian graded algebra $B$ is strict if for the graded cotangent module we have ${T^1}{(B/k,B)_r} = 0{\text {for }}\nu < - 1$. Various examples are considered where this condition holds. In particular, with this method we reprove a result of J. Sally [6].References
- M. Artin, Lectures on deformations of singularities, Tata Institute of Fundamental Research, Bombay, 1976.
R. O. Buchweitz, Contributions à la théorie des singularités: déformations de diagrammes, déploiements et singularités trés rigides, liaison algébrique, Thèse, Paris, 1981.
- J. Herzog, When is a regular sequence super regular?, Nagoya Math. J. 83 (1981), 183–195. MR 632652
- S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Trans. Amer. Math. Soc. 128 (1967), 41–70. MR 209339, DOI 10.1090/S0002-9947-1967-0209339-1
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
- Judith D. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ. 17 (1977), no. 1, 19–21. MR 450259, DOI 10.1215/kjm/1250522807
- Peter Schenzel, Über die freien Auflösungen extremaler Cohen-Macaulay-Ringe, J. Algebra 64 (1980), no. 1, 93–101 (German). MR 575785, DOI 10.1016/0021-8693(80)90136-2
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222. MR 217093, DOI 10.1090/S0002-9947-1968-0217093-3
- Richard P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math. 54 (1975), no. 2, 135–142. MR 458437, DOI 10.1002/sapm1975542135
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 165-172
- MSC: Primary 13D10; Secondary 13E10, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637161-4
- MathSciNet review: 637161