UNIQUENESS AND QUASI-MEASURES ON
THE GROUP OF INTEGERS OF A P-SERIES FIELD

WILLIAM R. WADE AND KAORU YONEDA

Abstract. Let G be the group of integers of a p-series field and suppose that S is a
character series on G. If N_1, N_2, \ldots is any sequence of integers and if $S_{N_j} \to 0$ a.e.
on G, as $j \to \infty$, then S will be the zero series provided S never diverges
unboundedly.

Let G denote the group of integers of a p-series field, where p is a prime > 2.
Thus, any element $\bar{x} \in G$ can be represented as a sequence $\{x_i\}_{i=0}^\infty$ with $0 < x_i < p$
for each $i > 0$. Moreover, the dual group $\{\psi_m\}_{m=0}^\infty$ of G can be described by the
following process. If m is a nonnegative integer with $m = \sum_{k=0}^\infty \alpha_k p^k$, $0 < \alpha_k < p$
for each k, and if $\bar{x} \in G$ then

$$
\psi_m(\bar{x}) = \prod_{k=0}^\infty \phi_k^m(\bar{x}),
$$

where for each integer $k > 0$ and for each $\bar{x} = \{x_i\} \in G$, the function ϕ_k is defined
by

$$
\phi_k(\bar{x}) = \exp(2\pi i x_k / p).
$$

In the case that $p = 2$, the group G is the dyadic group introduced by Fine [2] and
the functions $\{\psi_m\}_{m=0}^\infty$ are the Walsh-Paley functions. A detailed account of these
groups and basic properties can be found in [5].

Denote the partial sums of a character series $S = \sum_{m=0}^\infty a_m \psi_m$ by

$$
S_N = \sum_{m=0}^{N-1} a_m \psi_m, \quad N = 1, 2, \ldots .
$$

Vilenkin [6] has shown that if $S_N \to 0$ everywhere on G as $N \to \infty$, then S is the
zero series, i.e., $a_m = 0$ for $m = 0, 1, \ldots$. When N is replaced by p^N and conver-
gence is relaxed on a countable subset of G, a growth condition is usually necessary
to retain uniqueness. For example, in [8] we saw that if S_N converges to an integrable f on all but countably many points in G, and if $p^{-N}S_N \to 0$ everywhere
on G as $N \to \infty$, then S is the G-Fourier series of f. The second hypothesis of this
result cannot be relaxed at a single point $\bar{x}_0 \in G$ where $|S_{p^N}(\bar{x}_0)| \to +\infty$ as

Received by the editors January 19, 1981.
1980 Mathematics Subject Classification. Primary 42C10, 42C25; Secondary 43A75, 12B99.
Key words and phrases. Group of integers of a p-series field, uniqueness, Walsh functions, Egoroff's
Theorem.

© 1982 American Mathematical Society
0002-9939/82/0000-0410/S02.25

202
UNIQUENESS AND QUASI-MEASURES

Indeed, if $D = \sum_{m=0}^{\infty} \psi_m$ represents the Dirichlet kernel on G, then since

$$D_{p^N}(x) = \begin{cases} p^N & \text{if } \sum_{i=0}^{k-1} x p^{-i-1} < p^{-N}, \\ 0 & \text{otherwise}, \end{cases}$$

it is clear that both $D_{p^N}(x)$ and $p^{-N}D_{p^N}(x)$ converge to zero for $x \neq 0$ as $N \to \infty$ but D is not the zero series. It is not yet known how far the first hypothesis can be relaxed (see [7]). One would expect that “convergence off a countable set” could be replaced with “convergence a.e.” but even in the case $p = 2$ this has not been done.

If one strengthens the second hypothesis to condition (4) below, then convergence a.e. can be used. Indeed, we shall prove the following result.

Theorem. Suppose that $S = \sum_{m=0}^{\infty} a_m \psi_m$ and that $(m_j)_{j=1}^{\infty}$ is a subsequence of the natural numbers. If $S_{p^N} \to 0$ a.e. on G as $j \to \infty$, and if

$$\limsup_{j \to \infty} |S_{p^N}(\bar{x})| < \infty, \quad \bar{x} \in G,$$

then S is the zero series.

Techniques used to establish uniqueness for Walsh series fall into two categories: proof by a Haar series argument (e.g., [1]), and proof by differentiation (e.g., [2] and [4]). Neither of these techniques seem suited to prove the theorem above.

Our technique introduces a fresh viewpoint, and uses quasi-measures (defined below) as a crutch for carrying out the necessary calculations. Recall that the topology of G has a base at 0 which consists of closed/open subgroups G_n whose Haar measure $m(G_n)$ equals p^{-n}, $n > 0$. We shall denote $G_0 \equiv G$ by $I(0,0)$, and for each integer $n > 0$ we shall denote the cosets of G_n by $I(k,n)$, $0 < k < p^n$. The collection of sets $I(k,n)$, $0 < k < p^n$, $n = 0, 1, \ldots$, will be denoted by \mathcal{I}. Observe once and for all that $I(k_1,n) \cap I(k_2,n) = \emptyset$ for $k_1 \neq k_2$, that $m(I(k,n)) = p^{-n}$, that (reordering if necessary)

$$I(k,n) = \bigcup_{l=0}^{kp} I(l,n+1)$$

and that each ψ_l is constant on each $I(k,n)$ when $l < p^n$. A set function μ defined on \mathcal{I} is said to be a quasi-measure if

$$\mu(I(k,n)) = \sum_{l=0}^{kp} \mu(I(l,n+1)).$$

Clearly, every Borel measure on G is also a quasi-measure.

Fix integers k and n with $0 < k < p^n$. By an argument similar to that found in [3], one can show that if λ is a Borel measure on G, and if S is its Fourier-Stieltjes series, then

$$\lambda(I(k,n)) = \lim_{N \to \infty} \int_{I(k,n)} S_N \ dm.$$

Since $\int_{I(k,n)} \psi_l \ dm = 0$ for $l > p^n$ and since S_{p^N} is constant on $I(k,n)$, it follows that $\lambda(I(k,n)) = p^{-n}S_{p^N} \psi_l(x)$ for any choice of $x \in I(k,n)$. Thus we are led to associate
with any character series S the set function μ defined on \mathcal{G} by
\begin{equation}
\mu(I(k, n)) \equiv p^{-n}\mathcal{S}_{\nu}(\overline{x}), \quad \overline{x} \in I(k, n).
\end{equation}

A routine calculation (recall that the sum of pth roots of unity is zero) establishes that this set function μ is a quasi-measure. Moreover, since the characters of G are orthogonal it is clear that a necessary and sufficient condition for a character series S to be zero is that its associated quasi-measure satisfies $\mu(I) = 0$ for all $I \in \mathcal{G}$.

We are now prepared to prove the theorem. Indeed, if S is the given series and if μ is its associated quasi-measure, we need only show that $\mu \equiv 0$. We shall actually show that $\mu(G) = 0$. The same argument can be used to show that $\mu(I) = 0$ for all $I \in \mathcal{G}$ and thus complete the proof.

We assume for simplicity that $m_j = j$. Fix $0 < \epsilon < 1$. By Egoroff's Theorem we can choose a subset E_1 of G such that $m(E_1) > 1 - \epsilon$ and such that \mathcal{S}_{ν} converges uniformly to zero on E_1, as $N \to \infty$. Thus, given $\epsilon_1 > 0$ there exists an integer N_1 such that $|\mathcal{S}_{\nu}(\overline{x})| < \epsilon_1$ for $\overline{x} \in E_1$. But \mathcal{S}_{ν} is actually constant on sets of the form $I(k, N_1)$ so there exists a subset Z_1 of the positive integers such that $k \in Z_1$ implies $|\mathcal{S}_{\nu}(\overline{x})| < \epsilon_1$ for $\overline{x} \in I(k, N_1)$.

Observe that if $|Z_1|$ represents the cardinality of Z_1 then
\begin{equation}
|Z_1| \cdot p^{-N_1} = \sum_{k \in Z_1} m(I(k, N_1)) > m(E_1) > 1 - \epsilon.
\end{equation}

Thus $1 - |Z_1| \cdot p^{-N_1} < \epsilon$. Now, let k_1 be an integer which satisfies
\begin{equation}
|\mu(I(k_1, N_1))| = \max_{k \notin Z_1} |\mu(I(k, N_1))|
\end{equation}

and observe that $\mathcal{S}_{\nu} \to 0$ a.e. on $I(k_1, N_1)$ as $N \to \infty$. Thus, given $\epsilon_2 > 0$ we can choose a subset E_2 of $I(k_1, N_1)$ such that $m(E_2) > (1 - \epsilon)p^{-N_1}$ and choose an integer N_2 such that $|\mathcal{S}_{\nu}(\overline{x})| < \epsilon_2$ for $\overline{x} \in E_2$.

Continuing in this manner, given any positive integer j and $\epsilon_j > 0$ we can choose positive integers N_j, k_j, subsets Z_j of natural numbers and E_j of G such that
\begin{equation}
1 - |Z_j| \cdot p^{-N_j} < \epsilon,
\end{equation}

if $k \in Z_j$ then $|\mathcal{S}_{\nu}(\overline{x})| < \epsilon_j$ for $\overline{x} \in I(k, N_1 + \cdots + N_j)$

and
\begin{equation}
|\mu(I(k_j, N_1 + \cdots + N_j))| = \max_{k \notin Z_j} |\mu(I(k, N_1 + \cdots + N_j))|: k \notin Z_j
\end{equation}

and $I(k, N_1 + \cdots + N_j) \subseteq I(k_{j-1}, N_1 + \cdots + N_{j-1})$.

To estimate $\mu(G)$, observe by (6) that $|\mu(G)| < T_1 + \tilde{T}_1$ where
\begin{equation}
T_1 = \sum \{|\mu(I(k, N_1))|: k \in Z_1\}
\end{equation}

and
\begin{equation}
\tilde{T}_1 = \sum \{|\mu(I(k, N_1))|: 0 < k < p^{N_1}, k \notin Z_1\}.
\end{equation}

To estimate T_1 we observe that $|Z_1| \cdot p^{-N_1} < 1$ follows from the fact that there are at most p^{N_1} sets of the form $I(k, N_1)$. Therefore, by (7) and (9) we have that $T_1 < \epsilon_1$.

To estimate \tilde{T}_1 we apply (10) to conclude that

$$\tilde{T}_1 \leq (p^{-N_1} - |Z_1|)\mu(I(k_1, N_1)).$$

Thus

$$|\mu(G)| \leq \epsilon_1 + (p^{-N_1} - |Z_1|)\mu(I(k_1, N_1)).$$

But (6), (7), (9), and (10) can be used to estimate $|\mu(I(k_1, N_1))|$ by summing over those intervals $I(k, N_1 + N_2)$ which are contained in $I(k_1, N_1)$ and separating the indices $k \in \mathbb{Z}_2$ from $k \notin \mathbb{Z}_2$. Again $|Z_2|p^{-N_2} < 1$ follows from the fact that there are at most p^{N_2} sets of the form $I(k, N_1 + N_2)$ contained in $I(k_1, N_1)$.

If we continue breaking up $|\mu(I(k_j, N_1 + \cdots + N_j))|$ in this manner we arrive at the following inequality:

$$|\mu(G)| \leq \epsilon_1 + \epsilon_2(p^{-N_1} - |Z_1|) + \cdots + \epsilon_j \prod_{l=1}^{j-1} (p^{N_l} - |Z_l|) + |\mu(I(k_j, N_1 + \cdots + N_j))| \cdot \prod_{j=1}^{j} (p^{N_j} - |Z_j|),$$

$j = 1, 2, \ldots$. Set $\epsilon_1 = \epsilon/2$ and for each integer $j > 1$ set

$$\epsilon_j = 2^{-j}\epsilon \left(\prod_{l=1}^{j-1} (p^{N_l} - |Z_l|) \right)^{-1}. $$

It follows from (8) and (11) that

$$|\mu(G)| \leq \epsilon(1 - 2^{-j}) + \epsilon(p^{N_1} + \cdots + N_j) \mu(I(k_j, N_1 + \cdots + N_j)).$$

Observe by construction that the collection of compact sets

$$\{I(k_j, N_1 + \cdots + N_j)\}_{j=1}^{\infty}$$

is nested. Consequently, we can choose a point \bar{x}_0 which belongs to $I(k_j, N_1 + \cdots + N_j)$ for all integers $j \geq 1$. By (7), then, the estimate (12) becomes

$$|\mu(G)| \leq \epsilon + \epsilon|S_{p,n}(\bar{x}_0)|.$$

Our simplifying assumption turns (4) into $\limsup_{N \to \infty} S_{p,n}(\bar{x}_0) = A < \infty$. Thus

$$|\mu(G)| \leq \epsilon + A\epsilon.$$

In particular, if we let $\epsilon \to 0$ we obtain $\mu(G) = 0$, thus completing the proof of the theorem.

Bibliography

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916

Department of Mathematics, University of Osaka Prefecture, Sakai, Osaka, Japan