Uniqueness and quasimeasures on the group of integers of a $p$-series field
HTML articles powered by AMS MathViewer
- by William R. Wade and Kaoru Yoneda
- Proc. Amer. Math. Soc. 84 (1982), 202-206
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637169-9
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 88 (1983), 378.
Abstract:
Let $G$ be the group of integers of a $p$-series field and suppose that $S$ is a character series on $G$. If ${N_1}$, ${N_2}, \ldots$ is any sequence of integers and if ${S_{{p^{{N_j}}}}} \to 0$ a.e. on $G$, as $j \to \infty$, then $S$ will be the zero series provided $S$ never diverges unboundedly.References
- F. G. Arutjunjan and A. A. Talaljan, Uniqueness of series in Haar and Walsh systems, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1391–1408 (Russian). MR 0172056
- N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414. MR 32833, DOI 10.1090/S0002-9947-1949-0032833-2
- N. J. Fine, Fourier-Stieltjes series of Walsh functions, Trans. Amer. Math. Soc. 86 (1957), 246–255. MR 91371, DOI 10.1090/S0002-9947-1957-0091371-6
- R. J. Lindahl, A differentiation theorem for functions defined on the dyadic rationals, Proc. Amer. Math. Soc. 30 (1971), 349–352. MR 284549, DOI 10.1090/S0002-9939-1971-0284549-2
- M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0487295
- N. Vilenkin, On a class of complete orthonormal systems, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 11 (1947), 363–400 (Russian, with English summary). MR 0022560
- William R. Wade, Growth conditions and uniqueness for Walsh series, Michigan Math. J. 24 (1977), no. 2, 153–155. MR 487247
- William R. Wade, Sets of uniqueness for the group of integers of a $p$-series field, Canadian J. Math. 31 (1979), no. 4, 858–866. MR 540913, DOI 10.4153/CJM-1979-081-7
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 202-206
- MSC: Primary 43A50; Secondary 12B40, 22E50, 42C99
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637169-9
- MathSciNet review: 637169