Characterization of approximately inner automorphisms
HTML articles powered by AMS MathViewer
- by Marie Choda
- Proc. Amer. Math. Soc. 84 (1982), 231-234
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637174-2
- PDF | Request permission
Abstract:
Let $M$ be a finite factor acting standardly on a Hilbert space $H$. An automorphism $\theta$ of $M$ is approximately inner on $M$ if and only if there exists a state $\phi$ on $B(H)$ such that $\phi (JuJ\theta (u)) = 1$ for every unitary $u$ in $M$, where $J$ is the canonical involution. Specially, $\theta$ is inner on $M$ if and only if such a state is a vector state.References
- Marie Choda, The states associated with approximately inner automorphisms, Proc. Amer. Math. Soc. 81 (1981), no. 2, 343–344. MR 593488, DOI 10.1090/S0002-9939-1981-0593488-5
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- A. Connes, A factor of type $\textrm {II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151–153. MR 587372
- J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9–39 (French). MR 59485
- Shôichirô Sakai, Automorphisms and tensor products of operator algebras, Amer. J. Math. 97 (1975), no. 4, 889–896. MR 390787, DOI 10.2307/2373678
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 27, Springer-Verlag, Berlin-New York, 1970. Second printing. MR 0257800
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 231-234
- MSC: Primary 46L40
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637174-2
- MathSciNet review: 637174