Totally real minimal immersions of $n$-dimensional real space forms into $n$-dimensional complex space forms
HTML articles powered by AMS MathViewer
- by Norio Ejiri
- Proc. Amer. Math. Soc. 84 (1982), 243-246
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637177-8
- PDF | Request permission
Abstract:
$n$-dimensional totally real minimal submanifolds of constant sectional curvature in $n$-dimensional complex space forms are totally geodesic or flat.References
- Bang-yen Chen and Koichi Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266. MR 346708, DOI 10.1090/S0002-9947-1974-0346708-7
- Shing Tung Yau, Submanifolds with constant mean curvature. I, II, Amer. J. Math. 96 (1974), 346–366; ibid. 97 (1975), 76–100. MR 370443, DOI 10.2307/2373638
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 243-246
- MSC: Primary 53C42; Secondary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637177-8
- MathSciNet review: 637177