Calculating the fundamental group of an orbit space
HTML articles powered by AMS MathViewer
- by M. A. Armstrong
- Proc. Amer. Math. Soc. 84 (1982), 267-271
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637181-X
- PDF | Request permission
Abstract:
Suppose $G$ acts effectively as a group of homeomorphisms of the connected, locally path connected, simply connected, locally compact metric space $X$. Let $\overline G$ denote the closure of $G$ in ${\text {Homeo}}(X)$, and $N$ the smallest normal subgroup of $\overline G$ which contains the path component of the identity of $\overline G$ and all those elements of $\overline G$ which have fixed points. We show that ${\pi _1}(X/G)$ is isomorphic to $\overline G /N$ subject to a weak path lifting assumption for the projection $X \to X/\overline G$.References
- M. A. Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc. 61 (1965), 639–646. MR 187244, DOI 10.1017/s0305004100038974
- M. A. Armstrong, The fundamental group of the orbit space of a discontinuous group, Proc. Cambridge Philos. Soc. 64 (1968), 299–301. MR 221488, DOI 10.1017/s0305004100042845
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323. MR 126506, DOI 10.2307/1970335
- F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. (3) 16 (1966), 635–650. MR 203715, DOI 10.1112/plms/s3-16.1.635
- Stephen Smale, A note on open maps, Proc. Amer. Math. Soc. 8 (1957), 391–393. MR 86295, DOI 10.1090/S0002-9939-1957-0086295-X
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 267-271
- MSC: Primary 55Q05; Secondary 57S99
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637181-X
- MathSciNet review: 637181