A note on the divisibility of certain Chern numbers
HTML articles powered by AMS MathViewer
- by Leonidas Charitos and Stavros Papastavridis
- Proc. Amer. Math. Soc. 84 (1982), 272-274
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637182-1
- PDF | Request permission
Abstract:
If $M$ is a weakly almost complex manifold, then ${c_r}(M) \in {H^{24}}(M;Z)$ is the $r$th Chern class of its normal bundle. Theorem 1. If $m$, $r$ are natural numbers with $r \leqslant m$, then there exists a $2m$-fold ${M_0}$, compact, closed and weakly almost complex, so that the normal characteristic number $\left \langle {{c_r}({M_0}){c_{m - r}}({M_0})} \right .$, $\left . {[{M_0}]} \right \rangle$ is a power of 2.References
- Edgar H. Brown Jr. and Franklin P. Peterson, Relations among characteristics classes. II, Ann. of Math. (2) 81 (1965), 356–363. MR 176490, DOI 10.2307/1970620
- Arunas Liulevicius, On the birth and death of elements in complex cobordism, Conference on homotopy theory (Evanston, Ill., 1974) Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, México, 1975, pp. 83–102. MR 761722
- J. Milnor, On the cobordism ring $\Omega ^{\ast }$ and a complex analogue. I, Amer. J. Math. 82 (1960), 505–521. MR 119209, DOI 10.2307/2372970
- E. Rees and E. Thomas, On the divisibility of certain Chern numbers, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 389–401. MR 467771, DOI 10.1093/qmath/28.4.389
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 272-274
- MSC: Primary 57R20; Secondary 57R95
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637182-1
- MathSciNet review: 637182