Generators of $H^{\ast } (M\textrm {SO};Z_{2})$ as a module over the Steenrod algebra, and the oriented cobordism ring
HTML articles powered by AMS MathViewer
- by Stavros Papastavridis
- Proc. Amer. Math. Soc. 84 (1982), 285-290
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637185-7
- PDF | Request permission
Abstract:
In this paper we will describe a minimal set of $A$-generators of ${H^* }(MSO;{Z_2})$ (where $A$ is the $\bmod {\mathbf { - }}2$ Steenrod Algebra). The description is very much analogous to ${\text {R}}$. Thom’s description of generators for ${H^*}(MO;{Z_2})$ (see [7]). As a corollary, we give simple cohomological criteria for a manifold to be indecomposable in the oriented cobordism. Our proof relies on work of D. J. Pengelley (see [5]).$^{1}$References
- A. L. Liulevicius, A proof of Thom’s theorem, Comment. Math. Helv. 37 (1962/63), 121–131. MR 145527, DOI 10.1007/BF02566966
- Arunas Liulevicius, Homology comodules, Trans. Amer. Math. Soc. 134 (1968), 375–382. MR 251720, DOI 10.1090/S0002-9947-1968-0251720-X
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932
- N. E. Steenrod, Cohomology operations, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR 0145525 D. J. Pengelley, The homology of MSO and MSU as ${A^* }$ comodule algebras, and the cobordism ring (to appear).
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
- C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292–311. MR 120654, DOI 10.2307/1970136
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 285-290
- MSC: Primary 55R40; Secondary 55S10, 57R75
- DOI: https://doi.org/10.1090/S0002-9939-1982-0637185-7
- MathSciNet review: 637185