Free $E-m$ groups and free $E-m$ semigroups
HTML articles powered by AMS MathViewer
- by Takayuki Tamura
- Proc. Amer. Math. Soc. 84 (1982), 318-324
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640222-7
- PDF | Request permission
Abstract:
A group [semigroup] is called $E$-$m$ if it satisfies the identity ${(xy)^m} = {x^m}{y^m}$. In this paper the author studies a necessary and sufficient condition on $m$ and $n$ for the free $E$-$m$ group [semigroup] to be homomorphic onto the free $E{\text { - }}n$ group [semigroup].References
- J. L. Alperin, A classification of $n$-abelian groups, Canadian J. Math. 21 (1969), 1238–1244. MR 248204, DOI 10.4153/CJM-1969-136-1
- A. Cherubini Spoletini and A. Varisco, Some properties of $E-m$ semigroups, Semigroup Forum 17 (1979), no. 2, 153–161. MR 527216, DOI 10.1007/BF02194317 —, On the exponent semigroup of an $E{\text { - }}m$ semigroup (to appear).
- J. Clarke, R. Pfiefer, and T. Tamura, Identities $E-2$ and exponentiality, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 7, 250–251. MR 551722, DOI 10.3792/pjaa.55.250
- Yuji Kobayashi, The exponent semigroup of a semigroup satisfying $(xy)^{3}=x^{3}y^{3}$, Semigroup Forum 19 (1980), no. 4, 323–330. MR 569811, DOI 10.1007/BF02572525 —, On the structure of exponent semigroups, J. Algebra (to appear).
- Thomas Nordahl, Semigroups satisfying $(xy)^{m}=x^{m}y^{m}$, Semigroup Forum 8 (1974), no. 4, 332–346. MR 374291, DOI 10.1007/BF02194776
- Mario Petrich, Introduction to semigroups, Merrill Research and Lecture Series, Charles E. Merrill Publishing Co., Columbus, Ohio, 1973. MR 0393206
- Takayuki Tamura, Complementary semigroups and exponent semigroups of order bounded groups, Math. Nachr. 59 (1974), 17–34. MR 348020, DOI 10.1002/mana.19740590103
- Takayuki Tamura, On the exponents of inverse semigroups, Proceedings of a Symposium on Inverse Semigroups and their Generalisations (Northern Illinois Univ., DeKalb, Ill., 1973) Northern Illinois Univ., DeKalb, Ill., 1973, pp. 172–185. MR 0387461
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 318-324
- MSC: Primary 20M05; Secondary 20E05
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640222-7
- MathSciNet review: 640222