EXTENSION OF A RESULT OF BEACHY AND BLAIR

G. B. DESALE AND K. VARADARAJAN

Abstract. Let \(a : R \to R \) be an automorphism of a ring \(R \). If \(R \) is an \(a \)-reduced ring in which every faithful left ideal is cofaithful, then the same is true for the \(a \)-twisted power series ring \(R^*[x] \).

Introduction. A module \(_RM \) is said to be cofaithful if there exists a finite number of elements \(m_1, \ldots, m_k \) in \(M \) with \(\cap_{i=1}^k \text{Ann}_R(m_i) = 0 \). Writing \(M^k \) for the direct sum of \(k \) copies of \(M \), it is clear that \(M \) is cofaithful if and only if there exists an exact sequence \(0 \to R \to M^k \) in \(R\text{-mod} \), where \(k \) is some integer \(\geq 1 \). A result of Beachy and Blair [1] asserts that if \(R \) is a commutative ring in which every faithful ideal is cofaithful, then the same is true for the polynomial ring \(R[x] \). The object of this note is to extend the validity of this result to skew power series rings under suitable assumptions on the ring \(R \).

Throughout this note \(R \) will denote a ring with identity and all the modules considered will be unitary left modules.

1. \(a \)-reduced rings. Let \(a : R \to R \) be a ring endomorphism satisfying \((1)a = 1\). We write \(a^n \) for \((a)a \) whenever \(a \in R \). The twisted (or skew) power series ring corresponding to the endomorphism \(a \) will have as its elements the usual formal power series \(\sum_{i\geq 0} x^ia_i \) with \(a_i \in R \) \((x^0 = 1 \) by convention) with addition defined in the usual way, but multiplication given by \(x^ix^j = x^{i+j} \) and \(a \cdot x = xa^n \) for \(i \geq 0 \), \(j \geq 0 \) and \(a \in R \). Then \(a \cdot x^r = x^ra^{nr} \) where \(a^r : R \to R \) is the \(r \)th power of \(a \). We will fix an endomorphism \(a \) and denote the twisted power series ring corresponding to \(a \) by \(R^*[x] \).

A ring \(R \) is said to be reduced if there are no nonzero nilpotent elements in \(R \). If \(a, b \) are elements in a reduced ring, it is easily seen that \(ab = 0 \iff ba = 0 \).

Definition 1.1. We say that \(R \) is an \(a \)-reduced if \(R \) is reduced and further satisfies the condition \(ab = 0 \iff a^nb = 0 \iff ab^a = 0 \) for any \(a, b \) in \(R \).

Proposition 1.2. Let \(R \) be an \(a \)-reduced. Let \(f = \sum_{i\geq 0} x^ia_i \), \(g = \sum_{j\geq 0} x^jb_j \) be in \(R^*[x] \). Then \(fg = 0 \) in \(R^*[x] \) if and only if \(a_ib_j = 0 \) for all \(i \geq 0, j \geq 0 \).
Proof. Let R be α-reduced and $a_i b_j = 0$ for all i, j. For any $k > 0$ the coefficient of x^k in fg is $\sum_{i+j=k; i>0, j>0} a_i^\alpha b_j$. Since R is α-reduced, from $a_i b_j = 0$ we immediately get $a_i^\alpha b_j = 0, a_i^\alpha b_j = 0, \ldots, a_i^\alpha b_j = 0$ for all $r > 0$. In particular $a_i^\alpha b_j = 0$. Hence $fg = 0$.

Conversely assume $fg = 0$ in $R[[x]]$. Then for any integer $k > 0$ we get

$$\sum_{i+j=k; i>0, j>0} a_i^\alpha b_j = 0. \quad (S_0)$$

We will refer to the equation $\sum_{i+j=k; i>0, j>0} a_i^\alpha b_j = 0$ as the kth equation of the system (S_0). The 0th equation of (S_0) yields $a_0 b_0 = 0$. The first equation of (S_0) is

$$a_0^\alpha b_1 + a_1 b_0 = 0. \quad (A_0)$$

Multiplying this on the left by b_0 we get

$$b_0 a_0^\alpha b_1 + b_0 a_1 b_0 = 0. \quad (B_0)$$

Since R is α-reduced, from $a_0 b_0 = 0$ we get $b_0 a_0 = 0, a_0^\alpha b_0 = 0 = a_0^\alpha a_0^\alpha, b_0^\alpha a_0^\alpha = 0 = b_0 a_0^\alpha$ for all $r > 1$. In particular $b_0 a_0^\alpha = 0$. Now, (B_0) yields $b_0 a_1 b_0 = 0$, which in turn yields $a_1 b_0 a_1 b_0 = 0$. Since R is reduced, this implies that $a_1 b_0 = 0$.

Assume inductively that we have proved that $a_i b_0 = 0$ for $0 < i < l$ (with $l > 1$). The $(l + 1)$st equation in the system (S_0) is

$$a_0^\alpha a_l b_{l+1} + a_l^\alpha b_l + \cdots + a_1^\alpha b_1 + a_{l+1} b_0 = 0. \quad (C_0)$$

Multiplying (C_0) on the left by b_0 we get

$$b_0 a_0^\alpha a_l b_{l+1} + b_0 a_l^\alpha b_l + \cdots + b_0 a_1^\alpha b_1 + b_0 a_{l+1} b_0 = 0. \quad (D_0)$$

From $a_i b_0 = 0$ for $0 < i < l$ and the α-reducibility of R we get $b_0 a_l^\alpha = 0$ for $0 < i < l$ and all $r > 0$. Now, equation (D_0) yields $b_0 a_{l+1} b_0 = 0$. Hence $a_{l+1} b_0 a_{l+1} b_0 = 0$. Since R is reduced, we get $a_{l+1} b_0 = 0$.

It follows that $a_l b_0 = 0$ for all $l > 0$.

Substituting (E_0) in (S_0), we get for every integer $k > 1$ the system of equations

$$\sum_{i+j=k; i>0, j>1} a_i^\alpha b_j = 0. \quad (S_1)$$

We will refer to the equation $\sum_{i+j=k; i>0, j>1} a_i^\alpha b_j = 0$ as the kth equation of the system (S_1). The first equation of (S_1) yields $a_0^\alpha b_1 = 0$. The α-reducibility of R now yields $a_0^\alpha b_1 = 0 = b_1 a_0$ and $b_1 a_0^\alpha = 0$ for any $r > 1$. The second equation of the system (S_1) is

$$a_0^\alpha b_2 + a_1^\alpha b_1 = 0. \quad (A_1)$$

Multiplying on the left by b_1 we get

$$b_1 a_0^\alpha b_2 + b_1 a_1^\alpha b_1 = 0. \quad (B_1)$$

Using $b_1 a_0^\alpha = 0$ for any $r > 1$ we see from (B_1) that $b_1 a_1^\alpha b_1 = 0$, which in turn yields $a_1^\alpha b_1 a_1^\alpha b_1 = 0$. The reduced nature of R now yields $a_1^\alpha b_1 = 0$. The α-reduced nature of R now yields $a_1 b_1 = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Assume inductively that we have proved that \(a_ib_i = 0 \) for \(0 < i < l \) (with \(l > 1 \)). The \(\alpha \)-reducibility of \(R \) then yields \(b_ia^\alpha = 0 \) for \(0 < i < l \) and \(r > 0 \). The \((l + 2)\)nd equation of the system \((S_1)\) is

\[
(C_1) \quad a_0^{\alpha^{l+2}}b_{l+2} + a_1^{\alpha^{l+1}}b_1 + \cdots + a_{l+1}a_1b_1 = 0.
\]

Multiplying \((C_1)\) on the left by \(b_1 \) we get

\[
(D_1) \quad b_1a_0^{\alpha^{l+2}}b_{l+2} + \cdots + b_1a_{l+1}a_1b_1 = 0.
\]

Using \(b_1a_i^\alpha = 0 \) for \(0 < i < l \) in \((D_1)\) we get \(b_1a_{l+1}a_1b_1 = 0 \). This in turn implies \(a_{l+1}a_1b_1b_1b_1 = 0 \) and the reduced nature of \(R \) implies \(a_{l+1}a_1b_1 = 0 \). The \(\alpha \)-reduced nature of \(R \) now yields \(a_{l+1}b_1 = 0 \).

\[(E_1) \quad \text{It follows that } a_i b_1 = 0 \text{ for all } i > 0.
\]

Using \((E_1)\), the system \((S_1)\) yields the system of equations

\[
(S_2) \quad \sum_{i+j=k} a_i^b b_j = 0 \text{ for any } k > 2.
\]

Proceeding as before and using \((S_2)\) we can show that

\[(E_2) \quad a_i b_2 = 0 \text{ for all } i > 0.
\]

Repeating this procedure we see that \(a_i b_j = 0 \) for all \(i, j \).

2. The main result. We will now prove the main result of this paper.

Theorem 2.1. Let \(\alpha : R \to R \) be a ring automorphism of \(R \) with \((1)\alpha = 1 \). Let \(R \) be \(\alpha \)-reduced and \(R^*[\![x]\!] \) the \(\alpha \)-twisted power series ring over \(R \). If every faithful left ideal in \(R \) is cofaithful, then every faithful left ideal in \(R^*[\![x]\!] \) is cofaithful.

Proof. Let \(I \) be any faithful left ideal of \(R^*[\![x]\!] \). Let \(I_0 = \{ a \in R \mid \text{there exists some } f \in I \text{ with } a \text{ as one of the coefficients occurring in } f \} \). Let \(a, b \) be elements of \(I_0 \). Let \(a = \text{coefficient of } x^i \text{ in } f \) with \(f \in I \) and \(b = \text{coefficient of } x^j \) in \(g \) with \(g \in I \). Then \(a + b = \text{coefficient of } x^{i+j} \text{ in } x^if + x^g \) and \(x^if + x^g \in I \). Hence \(a + b \in I_0 \).

Since \(\alpha \) is an automorphism, \(\alpha^{-1} \) exists. For any \(r \in R \), the coefficient of \(x^i \) in \(r^{\alpha^{-1}} \cdot f \) is precisely \(ra \). Thus \(a \in I_0 \), \(r \in R \Rightarrow ra \in I_0 \). This proves that \(I_0 \) is a left ideal in \(R \).

Let \(r \in \text{Ann}_R(I_0) \). Then for any \(f \in I \), the coefficient of \(x^i \) in \(r^{\alpha^{-1}} \cdot f = r \cdot \text{coefficient of } x^i \text{ in } f \) is \(0 \). Hence \(r^{\alpha^{-1}} \cdot f = 0 \) for any \(f \in I \). Since \(I \) is faithful in \(R^*[\![x]\!] \), we see that \(r^{\alpha^{-1}} = 0 \). Hence \(r = 0 \). This proves that \(I_0 \) is faithful in \(R \). Hence there exist finitely many elements \(a_1, a_2, \ldots, a_k \) in \(I_0 \) with \(\text{Ann}_R(a_1, \ldots, a_k) = 0 \).

Let \(a_i = \text{coefficient of } x^{i\alpha} \text{ in } f_j \in I \). Let \(g = \sum_{i \geq 0} x^i \lambda_i \) be any element of \(\text{Ann}_R^*[\![x]\!] (\hat{f}_1, \ldots, \hat{f}_k) \). From Proposition 1.2 we see that \(\lambda_i a_j = 0 \) for all \(i > 0 \) and \(1 < j < k \). Since \(\text{Ann}_R^*[\![x]\!] (\hat{a}_1, \ldots, \hat{a}_k) = 0 \) we get \(\lambda_i = 0 \) for all \(i > 0 \) and hence \(g = 0 \). This proves that \(\text{Ann}_R^*[\![x]\!] (\hat{f}_1, \ldots, \hat{f}_k) = 0 \), thereby showing that \(I \) is cofaithful in \(R^*[\![x]\!] \)-mod.
COROLLARY 2.2. If R is a commutative reduced ring in which every faithful ideal is cofaithful, then the same is true in the ordinary power series ring $R[[x]]$.

PROOF. For a commutative reduced ring R, the conclusion of Proposition 1.2 is true. Hence the proof of Theorem 2.1 goes through when R is commutative.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, CALGARY, ALBERTA, CANADA