EXTENSION OF A RESULT OF BEACHY AND BLAIR

G. B. DESALE AND K. VARADARAJAN

Abstract. Let \(\alpha: R \rightarrow R \) be an automorphism of a ring \(R \). If \(R \) is an \(\alpha \)-reduced ring in which every faithful left ideal is cofaithful, then the same is true for the \(\alpha \)-twisted power series ring \(R^*[[x]] \).

Introduction. A module \(R M \) is said to be cofaithful if there exists a finite number of elements \(m_1, \ldots, m_k \) in \(M \) with \(\cap_{i=1}^k \text{Ann}_R(m_i) = 0 \). Writing \(M^k \) for the direct sum of \(k \) copies of \(M \), it is clear that \(M \) is cofaithful if and only if there exists an exact sequence \(0 \rightarrow R \rightarrow M^k \) in \(\text{R-mod} \), where \(k \) is some integer \(\geq 1 \). A result of Beachy and Blair [1] asserts that if \(R \) is a commutative ring in which every faithful ideal is cofaithful, then the same is true for the polynomial ring \(R[x] \). The object of this note is to extend the validity of this result to skew power series rings under suitable assumptions on the ring \(R \).

Throughout this note \(R \) will denote a ring with identity and all the modules considered will be unitary left modules.

1. \(\alpha \)-reduced rings. Let \(\alpha: R \rightarrow R \) be a ring endomorphism satisfying \((1)\alpha = 1 \). We write \(a^\alpha \) for \((a)\alpha \) whenever \(a \in R \). The twisted (or skew) power series ring corresponding to the endomorphism \(\alpha \) will have as its elements the usual formal power series \(\sum_{i \geq 0} x^i a_i \) with \(a_i \in R \) \((x^0 = 1 \) by convention) with addition defined in the usual way, but multiplication given by \(x^i x^j = x^{i+j} \) and \(a \cdot x = x a^\alpha \) for \(i \geq 0, j \geq 0 \) and \(a \in R \). Then \(a \cdot x^r = x^r a^\alpha \) where \(a^r: R \rightarrow R \) is the \(r \)th power of \(a \). We will fix an endomorphism \(\alpha \) and denote the twisted power series ring corresponding to \(\alpha \) by \(R^*[[x]] \).

A ring \(R \) is said to be reduced if there are no nonzero nilpotent elements in \(R \). If \(a, b \) are elements in a reduced ring, it is easily seen that \(ab = 0 \Leftrightarrow ba = 0 \).

Definition 1.1. We say that \(R \) is \(\alpha \)-reduced if \(R \) is reduced and further satisfies the condition \(ab = 0 \Leftrightarrow a^\alpha b = 0 \Leftrightarrow ab^\alpha = 0 \) for any \(a, b \) in \(R \).

Proposition 1.2. Let \(R \) be \(\alpha \)-reduced. Let \(f = \sum_{i \geq 0} x^i a_i, g = \sum_{i \geq 0} x^i b_i \) be in \(R^*[[x]] \). Then \(fg = 0 \) in \(R^*[[x]] \) if and only if \(a_ib_j = 0 \) for all \(i \geq 0, j \geq 0 \).
Proof. Let R be α-reduced and $a_i b_j = 0$ for all i, j. For any $k > 0$ the coefficient of x^k in fg is $\sum_{i+j=k; i>0, j>0} a_i^* b_j$. Since R is α-reduced, from $a_i b_j = 0$ we immediately get $a_i^* b_j = 0$, $a_i^* b_j = 0$, \ldots, $a_i^* b_j = 0$ for all $r > 0$. In particular $a_i^* b_j = 0$. Hence $fg = 0$.

Conversely assume $fg = 0$ in $R[[x]]$. Then for any integer $k > 0$ we get

$$a_i^* b_j = 0.$$

We will refer to the equation $\sum_{i+j=k; i>0, j>0} a_i^* b_j = 0$ as the kth equation of the system (S0). The 0th equation of (S0) yields $a_0^* b_0 = 0$. The first equation of (S0) is

$$a_0^* b_1 + a_1^* b_0 = 0.$$

Multiplying this on the left by b_0 we get

$$b_0 a_0^* b_1 + b_0 a_1^* b_0 = 0.$$

Since R is α-reduced, from $a_0^* b_0 = 0$ we get $b_0 a_0^* = 0$, $b_0 a_0^* = 0 = b_0 a_i^*$ for all $r > 1$. In particular $b_0 a_i^* = 0$. Now, (B0) yields $b_0 a_i^* b_0 = 0$, which in turn yields $a_i^* b_0 = 0$. Since R is reduced, this implies that $a_i^* b_0 = 0$.

Assume inductively that we have proved that $a_i^* b_0 = 0$ for $0 < i < l$ (with $l > 1$). The $(l + 1)$st equation in the system (S0) is

$$a_0^* b_{l+1} + a_1^* b_l + \cdots + a_l^* b_1 + a_{l+1}^* b_0 = 0.$$

Multiplying (C0) on the left by b_0 we get

$$b_0 a_0^* b_{l+1} + b_0 a_1^* b_l + \cdots + b_0 a_l^* b_1 + b_0 a_{l+1}^* b_0 = 0.$$

From $a_0^* b_0 = 0$ for $0 < i < l$ and the α-reducibility of R we get $b_0 a_i^* = 0$ for $0 < i < l$ and all $r > 0$. Now, equation (D0) yields $b_0 a_i^* b_0 = 0$. Hence $a_i^* b_0 = 0$. Since R is reduced, we get $a_i^* b_0 = 0$.

We will refer to the equation $\sum_{i+j=k; i>0, j>1} a_i^* b_j = 0$ as the kth equation of the system (S1). The first equation of (S1) yields $a_0^* b_1 = 0$. The α-reducibility of R now yields $a_0^* b_1 = 0 = b_1 a_0^*$ and $b_1 a_0^* = 0$ for any $r > 1$. The second equation of the system (S1) is

$$a_0^* b_2 + a_1^* b_1 = 0.$$

Multiplying on the left by b_1 we get

$$b_1 a_0^* b_2 + b_1 a_1^* b_1 = 0.$$

Using $b_1 a_0^* = 0$ for any $r > 1$ we see from (B1) that $b_1 a_1^* b_1 = 0$, which in turn yields $a_1^* b_1 a_1^* b_1 = 0$. The reduced nature of R now yields $a_1^* b_1 = 0$. The α-reduced nature of R now yields $a_1^* b_1 = 0$.

Assume inductively that we have proved that \(a_ib_i = 0 \) for \(0 < i < l \) (with \(l > 1 \)). The \(\alpha \)-reducibility of \(R \) then yields \(b_ia_i = 0 \) for \(0 < i < l \) and \(r > 0 \). The \((l + 2)\)nd equation of the system \((S_l)\) is
\[
(a_i^{i+2}b_{i+2} + a_i^{i+1}b_i + \cdots + a_i^1b_1) = 0.
\]
Multiplying \((C_i)\) on the left by \(b_i \) we get
\[
b_i(a_i^{i+2}b_{i+2} + a_i^{i+1}b_i + \cdots + a_i^1b_1) = 0.
\]
Using \(b_ia_i = 0 \) for \(0 < i < l \) in \((D_i)\) we get \(b_ia_i^{i+1}b_1 = 0 \). This in turn implies \(a_i^{i+1}b_1a_i^{i+1}b_1 = 0 \) and the reduced nature of \(R \) implies \(a_i^{i+1}b_1 = 0 \). The \(\alpha \)-reduced nature of \(R \) now yields \(a_i^{i+1}b_1 = 0 \).

It follows that \(a_ib_i = 0 \) for all \(i > 0 \).

Using \((E_i)\), the system \((S_i)\) yields the system of equations
\[
\sum_{i+j=k, i>0, j>2} a_i^{i+j}b_j = 0 \quad \text{for any } k > 2.
\]
Proceeding as before and using \((S_j)\) we can show that
\[
a_ib_j = 0 \quad \text{for all } i > 0.
\]
Repeating this procedure we see that \(a_ib_j = 0 \) for all \(i, j \).

2. The main result. We will now prove the main result of this paper.

Theorem 2.1. Let \(\alpha : R \to R \) be a ring automorphism of \(R \) with \((1)\alpha = 1 \). Let \(R \) be \(\alpha \)-reduced and \(R[[x]] \) the \(\alpha \)-twisted power series ring over \(R \). If every faithful left ideal in \(R \) is cofaithful, then every faithful left ideal in \(R[[x]] \) is cofaithful.

Proof. Let \(I \) be any faithful left ideal of \(R[[x]] \). Let \(I_0 = \{a \in R \mid \text{there exists some } f \in I \text{ with } a \text{ as one of the coefficients occurring in } f\} \). Let \(a, b \) be elements of \(I_0 \). Let \(a = \text{coefficient of } x^i \text{ in } f \text{ with } f \in I \) and \(b = \text{coefficient of } x^j \text{ in } g \text{ with } g \in I \). Then \(a + b = \text{coefficient of } x^{i+j} \text{ in } x^if + x^jg \text{ and } x^if + x^jg \in I \). Hence \(a + b \in I_0 \).

Since \(\alpha \) is an automorphism, \(\alpha^{-1} \) exists. For any \(r \in R \), the coefficient of \(x^i \) in \(r^{\alpha^{-1}} \cdot f \) is precisely \(ra \). Thus \(a \in I_0, r \in R \Rightarrow ra \in I_0 \). This proves that \(I_0 \) is a left ideal in \(R \).

Let \(r \in \text{Ann}_R(I_0) \). Then for any \(f \in I \), the coefficient of \(x^i \) in \(r^{\alpha^{-1}} \cdot f \) is \(r \cdot (\text{coefficient of } x^i \text{ in } f) = 0 \). Hence \(r^{\alpha^{-1}} \cdot f = 0 \) for any \(f \in I \). Since \(I \) is faithful in \(R[[x]] \), we see that \(r^{\alpha^{-1}} = 0 \). Hence \(r = 0 \). This proves that \(I_0 \) is faithful in \(R \). Hence there exist finitely many elements \(a_1, a_2, \ldots, a_k \) in \(I_0 \) with \(\text{Ann}_R(a_1, \ldots, a_k) = 0 \).

Let \(a_i = \text{coefficient of } x^{\mu_i} \text{ in } f_i \in I \). Let \(g = \sum_{i \geq 0} x^i \lambda_i \) be any element of \(\text{Ann}_{R[[x]]}(f_1, \ldots, f_k) \). From Proposition 1.2 we see that \(\lambda_i a_j = 0 \) for all \(i > 0 \) and \(1 < j < k \). Since \(\text{Ann}_R(a_1, \ldots, a_k) = 0 \) we get \(\lambda_i = 0 \) for all \(i > 0 \) and hence \(g = 0 \). This proves that \(\text{Ann}_{R[[x]]}(f_1, \ldots, f_k) = 0 \), thereby showing that \(I \) is cofaithful in \(R[[x]] \)-mod.
Corollary 2.2. If R is a commutative reduced ring in which every faithful ideal is cofaithful, then the same is true in the ordinary power series ring $R[[x]]$.

Proof. For a commutative reduced ring R, the conclusion of Proposition 1.2 is true. Hence the proof of Theorem 2.1 goes through when R is commutative.

References