Triangularizable algebras of compact operators
HTML articles powered by AMS MathViewer
- by G. J. Murphy
- Proc. Amer. Math. Soc. 84 (1982), 354-356
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640229-X
- PDF | Request permission
Abstract:
It is shown that a closed algebra $A$ of compact operators is triangularizable if and only if the algebra $A/\operatorname {rad} (A)$ is commutative.References
- Bernard Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics, vol. 735, Springer, Berlin, 1979 (French). MR 549769
- M. D. Choi, C. Laurie, and H. Radjavi, On commutators and invariant subspaces, Linear and Multilinear Algebra 9 (1980/81), no. 4, 329–340. MR 611266, DOI 10.1080/03081088108817383
- H. R. Dowson, Spectral theory of linear operators, London Mathematical Society Monographs, vol. 12, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 511427
- P. Enflo, On the invariant subspace problem in Banach spaces, Séminaire Maurey-Schwartz (1975–1976): Espaces $L^p$, applications radonifiantes et géométrie des espaces de Banach, Centre Math., École Polytech., Palaiseau, 1976, pp. Exp. Nos. 14-15, 7. MR 0473871
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Thomas J. Laffey, Simultaneous triangularization of matrices—low rank cases and the nonderogatory case, Linear and Multilinear Algebra 6 (1978/79), no. 4, 269–305. MR 515915, DOI 10.1080/03081087808817249
- C. Laurie, E. Nordgren, H. Radjavi, and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143–155. MR 631313, DOI 10.1016/S0024-3795(01)00288-9
- V. I. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Priložen. 7 (1973), no. 3, 55–56 (Russian). MR 0420305
- Neal H. McCoy, On quasi-commutative matrices, Trans. Amer. Math. Soc. 36 (1934), no. 2, 327–340. MR 1501746, DOI 10.1090/S0002-9947-1934-1501746-8 —, On the characteristic roots of matrix polynomials, Bull. Amer. Math. Soc. 42 (1963), 592-600.
- J. R. Ringrose, Super-diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367–384. MR 136998, DOI 10.1112/plms/s3-12.1.367
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 354-356
- MSC: Primary 47D30; Secondary 47B05
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640229-X
- MathSciNet review: 640229