Unitary one-parameter groups with finite speed of propagation
HTML articles powered by AMS MathViewer
- by E. C. Svendsen
- Proc. Amer. Math. Soc. 84 (1982), 357-361
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640230-6
- PDF | Request permission
Abstract:
Suppose that $\xi$ is a Hermitian vector bundle over a Riemannian manifold and that $U$ is a one-parameter group of linear operators on the set of smooth sections of $\xi$ with compact support. We prove that if $U$ satisfies a smoothness condition, is unitary, and propagates initial data with finite speed, then it can be constructed from the solutions of a first-order symmetric hyperbolic system of partial differential equations.References
- Stephen J. Berman, Wave equations with finite velocity of propagation, Trans. Amer. Math. Soc. 188 (1974), 127–148. MR 330781, DOI 10.1090/S0002-9947-1974-0330781-6
- Paul R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Analysis 12 (1973), 401–414. MR 0369890, DOI 10.1016/0022-1236(73)90003-7
- I. M. Gel′fand and G. E. Šilov, Fourier transforms of rapidly increasing functions and questions of the uniqueness of the solution of Cauchy’s problem, Amer. Math. Soc. Transl. (2) 5 (1957), 221–274. MR 0083624
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Jaak Peetre, Réctification à l’article “Une caractérisation abstraite des opérateurs différentiels”, Math. Scand. 8 (1960), 116–120 (French). MR 124611, DOI 10.7146/math.scand.a-10598
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 357-361
- MSC: Primary 58G11; Secondary 35L40, 47D10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640230-6
- MathSciNet review: 640230