A uniqueness theorem for superharmonic functions in $\textbf {R}^{n}$
HTML articles powered by AMS MathViewer
- by J. L. Schiff
- Proc. Amer. Math. Soc. 84 (1982), 362-364
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640231-8
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 87 (1983), 378.
Abstract:
Let $s(x)$ be a nonnegative superharmonic function defined on the $n$-ball ${B^n}(y;r)$ in ${{\mathbf {R}}^n}, n \geqslant 3$. If $s(x)$ tends to zero "too rapidly" as $x$ tends to a single point $\xi$ on the boundary of ${B^n}(y;r)$, then we prove that $s \equiv 0$. The same result can then be extended to domains $D \subseteq {{\mathbf {R}}^n}$, whose boundary $\partial D$ is locally ${C^1}$ at $\xi \in \partial D$. These results generalize some earlier work of the author and Ü. Kuran for $n = 2$.References
- M. Brelot, Eléments de la théorie classique du potential, Centre de Documentation Universitaire, Paris, 1969.
- Ü. Kuran, Some uniqueness theorems for harmonic functions in terms of their behaviour at one boundary point, J. Math. Anal. Appl. 88 (1982), no. 2, 517–530. MR 667075, DOI 10.1016/0022-247X(82)90210-4 Ü. Kuran and J. L. Schiff, A uniqueness theorem for non-negative superharmonic functions in planar domains, J. Math. Anal. Appl. (to appear).
- Linda Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183–281 (French). MR 100174, DOI 10.5802/aif.70
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 362-364
- MSC: Primary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640231-8
- MathSciNet review: 640231