OSCILLATION THEOREMS FOR NONLINEAR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DAMPED TERM

CHEH-CHIH YEH

Abstract. Some new integral criteria for the oscillation of the nonlinear second order differential equation with damped term \(y''(t) + p(t)y'(t) + q(t)f(y(t)) = 0 \) are given.

1. Introduction. Consider the linear differential equation

\[
y''(t) + a(t)y(t) = 0
\]

where \(a(t) \in C[t_0, \infty) \). By the well-known theorem of Wintner [12]

\[
\lim_{t \to \infty} \frac{1}{t} \int_{t_0}^{t} a(s) \, ds = \infty
\]

is sufficient for equation (1) to be oscillatory even when \(a(t) \) is not assumed positive. Hartman [5] proved that the limit cannot be replaced by the upper limit in condition (2). In [6], Kamenev extended Wintner's result by using the \(n \)th primitive

\[
A_n(t) = \frac{1}{n!} \int_{t_0}^{t} (t - u)^{n-1} a(u) \, du
\]

of the coefficient \(a(t) \) for some integer \(n \geq 3 \).

Let \(R \) be the set of all real numbers. Considering the nonlinear differential equation

\[
y''(t) + q(t)f(y(t)) = 0
\]

where \(q \in C[t_0, \infty), f \in C(R), yf(y) > 0 \) for \(y \neq 0 \) and \(f'(y) \geq 0 \) for all \(y \in R \). Under the assumption that \(q(t) \) is eventually nonnegative, Waltman [11] proved the following extension of an oscillatory result of Atkinson [1], who considered the special case \(f(y) = y^{2n+1}, n = 1, 2, \ldots \).

Theorem A. Assume that for some \(p > 1, f(y) \) satisfies

\[
\liminf_{y \to \infty} \frac{f(y)}{|y|^p} > 0.
\]

Then a necessary and sufficient condition that all solutions of (3) are oscillatory is that

\[
\int_{t_0}^\infty t q(t) \, dt = \infty.
\]
Removing the assumption \(q(t) \geq 0 \) from Waltman's theorem, Legatos and Kartsatos [7] proved the following result:

Theorem B. In addition to (4) assume that

\[
\int_{1}^{\infty} \frac{dt}{f(t)} < \infty, \quad \int_{-\infty}^{\infty} \frac{dt}{f(t)} < \infty.
\]

Then every solution of (3) is either oscillatory or tends monotonically to zero as \(t \to \infty \).

Under the same assumptions of Theorem B, Travis [10, Theorem 2.1] proved all solutions of (3) to be oscillatory.

Recently, the present author [13] gave a new criterion for the oscillation of (3) by removing the condition (5) and using the \(n \)th primitive of the coefficient \(q(t) \) for some integer \(n \geq 3 \).

The purpose of this note is to establish some new oscillation criteria for the following more general nonlinear second order differential equation with damped term

\[
y''(t) + p(t)y'(t) + q(t)f(y(t)) = 0
\]

where \(p, q \in C[t_{0}, \infty), f \in C(R), yf(y) > 0 \) for \(y \neq 0 \).

Results for (6) with nonlinear damping have been obtained by Baker [2], Bobisud [3], Butler [4] and Pinter [9].

By a solution of (6) at \(t_{0} > 0 \) is meant a function \(y: [t_{0}, t_{1}) \to R \), \(t_{0} < t_{1} \), which satisfies (6) for all \(t \in [t_{0}, t_{1}) \). We assume the existence of solutions of (6) at \(t_{0} \) for every \(t_{0} \geq 0 \). A solution \(y(t) \) of (6) at \(t_{0} \) is said to be continuable if \(y(t) \) exists for all \(t \geq t_{0} \). A continuable solution \(y(t) \) of (6) is called oscillatory if \(y(t) \) has zeros for arbitrarily large \(t \) and nonoscillatory if there exists \(t^{*} \geq 0 \) such that \(y(t) \neq 0 \) for all \(t \geq t^{*} \).

2. \(q(t) \) is not assumed positive. In this section, we treat the case that \(q(t) \) is not assumed positive. At first, we give a new criterion for the oscillation of (6).

Theorem 1. Let \(f'(y) \) exist and \(f'(y) \geq k > 0 \) for \(y \in R' \equiv R - \{0\} \). If

(C₁) \[
\limsup_{t \to \infty} \frac{1}{t^{n-1}} \int_{t_{0}}^{t} (t-u)^{n-1} uq(u) \, du = \infty,
\]

(C₂) \[
\lim_{t \to \infty} \frac{1}{t^{n-1}} \int_{t_{0}}^{t} u \left[\left(p(u) - \frac{1}{u} \right) + n - 1 \right]^{2} (t-u)^{n-3} \, du < \infty
\]

for some integer \(n \geq 3 \), then every solution of (6) is oscillatory.

Proof. Let \(y(t) \) be a nonoscillatory solution of (6) which, without loss of generality, we may assume \(y(t) \neq 0 \) for \(t \geq t_{0} \). Define

\[
w(t) = \frac{ty'(t)}{f(y(t))}.
\]

Then \(w(t) \) satisfies

\[
w'(t) - \frac{w(t)}{t} + p(t)w(t) + q(t)t + w^{2}(t) \frac{f'(y(t))}{t} = 0.
\]
This and \(f'(y) \geq k > 0 \) for \(y \neq 0 \) imply
\[
w'(t) + \left[p(t) - \frac{1}{t} \right] w(t) + q(t)t + \frac{k}{t} w^2(t) \leq 0.
\]

Thus
\[
\int_{t_0}^{t} (t-u)^{-1} w'(u) \, du + \int_{t_0}^{t} (t-u)^{-1} (ku^{-1}w^2(u) + \left[p(u) - u^{-1} \right] w(u)) \, du
\]
\[
+ \int_{t_0}^{t} (t-u)^{-1} uq(u) \, du \leq 0.
\]

Since
\[
\int_{t_0}^{t} (t-u)^{-1} w'(u) \, du = (n-1) \int_{t_0}^{t} (t-u)^{-2} w(u) \, du - w(t_0)(t-t_0)^{n-1},
\]
we get
\[
\frac{1}{t^{n-1}} \int_{t_0}^{t} (t-u)^{-1} uq(u) \, du \leq w(t_0) \left(\frac{t-t_0}{t} \right)^{n-1}
\]
\[
- t^{1-n} \int_{t_0}^{t} (ku^{-1}(t-u)^{-1}w^2(u) + \left[(t-u)^{-1} (p(u) - u^{-1})
\right.
\]
\[
+ (n-1)(t-u)^{n-2} w(u)) \, du
\]
\[
= w(t_0) \left(\frac{t-t_0}{t} \right)^{n-1} + (4kt^{n-1})^{-1}
\]
\[
\cdot \int_{t_0}^{t} [(t-u)(p(u) - u^{-1}) + n-1] \, du
\]
\[
- t^{1-n} \int_{t_0}^{t} \left[(ku^{-1}(t-u)^{-1})^{1/2} w(u)
\right.
\]
\[
+ \frac{(t-u)(p(u) - u^{-1}) + n-1}{2k^{1/2}} \left[u^{1/2}(t-u)^{(n-3)/2} \right]^{2} \, du
\]
\[
\leq w(t_0) + (4kt^{n-1})^{-1} \int_{t_0}^{t} [(t-u)(p(u) - u^{-1}) + n-1] \, du
\]
\[
\to w(t_0) + M \equiv \text{a finite number},
\]
as \(t \to \infty \) by \(\text{(C}_2\text{)} \), which contradicts condition \(\text{(C}_1\text{)} \). This proves our theorem.

Remark 1. It follows from \(\text{(C}_2\text{)} \) that \(p(t) \equiv 0 \) in Theorem 1, in which \(p(t) \) can be thought of as a small perturbation of \(1/t \).

Example 1. Consider the equation
\[
y''(t) + \frac{1}{t} y'(t) + \frac{1}{t^2} y(t) = 0, \quad t \geq 1.
\]

All conditions of Theorem 1 are satisfied for \(n = 3 \). Hence all solutions of equation \(\text{(E)} \) are oscillatory, whereas none of the known criteria \[1\], \[7\], \[8\], \[10\], \[11\] can obtain this result. One such solution of equation \(\text{(E)} \) is \(y(t) = \sin(\ln t) \).
The following theorem extends the results of [1], [6], [12], [13] to equation (6) and consequently improves the results in [7], [8], [10].

Theorem 2. Let \(f'(y) \) exist and \(f'(y) \geq k > 0 \) for \(y \in \mathbb{R}' \). If

\[
(C_3) \quad \limsup_{t \to \infty} \frac{1}{t^{n-1}} \int_{t_0}^t (t-u)^{n-1} q(u) \, du = \infty,
\]

\[
(C_4) \quad \lim_{t \to \infty} \frac{1}{t^{n-1}} \int_{t_0}^t [(t-u)p(u) + n-1]^2 (t-u)^{n-3} \, du < \infty
\]

for some integer \(n \geq 3 \), then every solution of (6) is oscillatory.

Proof. Let \(y(t) \) be a nonoscillatory solution of (6), which without loss of generality, we may assume \(y(t) \neq 0 \) for \(t \geq t_0 \). Letting \(w(t) = y'(t)/f(y(t)) \), we have

\[
w'(t) + w^2(t)f'(y(t)) + p(t)w(t) + q(t) = 0.
\]

Thus

\[
w'(t) + kw^2(t) + p(t)w(t) + q(t) \leq 0.
\]

Hence

\[
\int_{t_0}^t (t-u)^{n-1} w'(u) \, du + \int_{t_0}^t (t-u)^{n-1} [kw^2(u) + p(u)w(u)] \, du \\
+ \int_{t_0}^t (t-u)^{n-1} q(u) \, du \leq 0.
\]

As in the proof of Theorem 1, we have

\[
t^{1-n} \int_{t_0}^t (t-u)^{n-1} q(u) \, du \leq w(t_0) \left(\frac{t-t_0}{t} \right)^{n-1} \\
- t^{1-n} \int_{t_0}^t \left[k^{1/2}(t-u)^{(n-1)/2} w(u) \\
+ \frac{(t-u)p(u) + n-1}{2k^{1/2}} (t-u)^{(n-3)/2} \right]^2 \, du \\
+ (4kt^{n-1})^{-1} \int_{t_0}^t [(t-u)p(u) + n-1]^2 (t-u)^{n-3} \, du \\
\to w(t_0) + M_0 \equiv \text{a finite number},
\]

as \(t \to \infty \), which contradicts condition \((C_3)\). Thus our proof is complete.

Remark 2. It follows from \((C_4)\) that \(p(t) \) may be equal to zero in Theorem 2, in which \(p(t) \) can be thought of as a small perturbation of 0.

Taking \(p(t) = 0 \) in equation (6), we see easily that condition \((C_4)\) can be removed and we have the following result:

Corollary 1 [13]. Let \(f'(y) \) exist and \(f'(y) \geq k > 0 \) for \(y \in \mathbb{R}' \). If \((C_3)\) holds, then every solution of (3) is oscillatory.

Remark 3. Let \(f(y) = y \) in Corollary 1. If (2) holds, then \((C_3)\) holds for \(n = 3 \). Thus Wintner’s result [12] is a special case of Corollary 1.
Example 2. Consider the equation

\[(F) \quad y''(t) + \frac{1}{2t} y'(t) + \frac{1}{4t} y(t) = 0, \quad t \geq 1. \]

All conditions of Theorem 2 are satisfied for \(n = 3 \). Hence every solution of equation (F) is oscillatory, whereas none of the known criteria [7], [8], [10] can obtain this result. One such solution of equation (F) is \(y(t) = 8 \sin \sqrt{t} \).

3. \(q(t) \) is eventually nonnegative. In this section, we discuss the case that \(q(t) \) is eventually nonnegative and \(f(y) \) is not required to be differentiable.

Theorem 3. Let \(q(t) \geq 0 \) and \(f(y)/y \geq k > 0 \) for \(y \neq 0 \). If (C3) and (C4) holds, then every solution of (6) is oscillatory.

Proof. Assume that \(y(t) \) is a nonoscillatory solution of (6). Letting \(w(t) = y'(t)/y(t) \), we have

\[w'(t) + w^2(t) + p(t)w(t) + q(t)f(y(t))/y(t) = 0. \]

Hence

\[w'(t) + w^2(t) + p(t)w(t) + kq(t) \leq 0. \]

Thus

\[\int_{t_0}^{t} (t-u)^{-1} w'(u) \, du + \int_{t_0}^{t} (t-u)^{-1} \left[w^2(u) + p(u)w(u) \right] \, du \]

\[+ k \int_{t_0}^{t} (t-u)^{-1} q(u) \, du \leq 0. \]

As in the proof of Theorem 1, we have

\[\frac{k}{t^{n-1}} \int_{t_0}^{t} (t-u)^{-1} q(u) \, du \leq w(t_0) \left(\frac{t-t_0}{t} \right)^{n-1} \]

\[- t^{1-n} \int_{t_0}^{t} \left[(t-u)^{n-1/2} w(u) + \frac{(t-u)p(u) + n-1}{2} (t-u)^{(n-3)/2} \right]^2 \, du \]

\[+ 4^{-1} t^{1-n} \int_{t_0}^{t} [(t-u)p(u) + n-1]^2 (t-u)^{n-3} \, du \]

\[\rightarrow w(t_0) + L \equiv \text{a finite number}, \]

as \(t \to \infty \), which contradicts condition (C3). Thus our proof is complete.

Corollary 2. Let \(q(t) \geq 0 \), \(f(y)/y \geq k > 0 \) for \(y \neq 0 \). If (C3) holds, then every solution of (3) is oscillatory.

Remark 4. The theorems and corollaries obtained in this note apply even when the weaker condition

\[\int_{a}^{\infty} \frac{dy}{f(y)} < \infty, \quad \int_{-\infty}^{a} \frac{dy}{f(y)} < \infty \]

fails for each \(a > 0 \); for example, \(f(y) = y \) in equations (E) and (F).
ACKNOWLEDGEMENT. The author wishes to thank the referee for his helpful comments.

REFERENCES

DEPARTMENT OF MATHEMATICS, CENTRAL UNIVERSITY, CHUNG-LI, TAIWAN, REPUBLIC OF CHINA