Heegaard diagrams of lens spaces
HTML articles powered by AMS MathViewer
- by R. P. Osborne
- Proc. Amer. Math. Soc. 84 (1982), 412-414
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640243-4
- PDF | Request permission
Abstract:
Let $(M,F;\upsilon ,w)$ be a Heegaard diagram of $M$. The complexity of this diagram is the number of points in $\upsilon \cap m$. This is also the length of the relators in a group presentation naturally corresponding to this diagram. We give an example to show that a Heegaard diagram of minimal complexity need not have a cancelling pair of meridian disks. In terms of the presentation, this says that a minimal length presentation need not have a defining relator for one of the generators. This provides a counterexample to a conjecture of Waldhausen. Our example depends on the rather trivial observation that the shortest possible $2$-generator presentation of the cyclic group of order $173$ is $\left \langle {a,b|{a^{13}}{b^2},{a^{ - 2}}{b^{13}}} \right \rangle$.References
- Friedhelm Waldhausen, Some problems on $3$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 313–322. MR 520549
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X
- Joan S. Birman and José María Montesinos, On minimal Heegaard splittings, Michigan Math. J. 27 (1980), no. 1, 47–56. MR 555836
- Richard S. Stevens, Classification of $3$-manifolds with certain spines, Trans. Amer. Math. Soc. 205 (1975), 151–166. MR 358786, DOI 10.1090/S0002-9947-1975-0358786-0
- R. P. Osborne and R. S. Stevens, Group presentations corresponding to spines of $3$-manifolds. I, Amer. J. Math. 96 (1974), 454–471. MR 356058, DOI 10.2307/2373554
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 412-414
- MSC: Primary 57M05; Secondary 57N10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640243-4
- MathSciNet review: 640243