Fixed points of nonexpansive condensing multivalued mappings on metric spaces
HTML articles powered by AMS MathViewer
- by Ch’i Lin Yen
- Proc. Amer. Math. Soc. 84 (1982), 415-419
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640244-6
- PDF | Request permission
Abstract:
In this paper we consider the existence of fixed points of nonexpansive condensing multi-valued mappings from a certain kind of metric space into itself; the spaces, here, are neither linear nor compact. Our result generalizes a theorem of Dotson and also a theorem of Bose and Mukherjee in some respect.References
- R. K. Bose and R. N. Mukherjee, On fixed points of nonexpansive set-valued mappings, Proc. Amer. Math. Soc. 72 (1978), no. 1, 97–98. MR 488002, DOI 10.1090/S0002-9939-1978-0488002-9
- W. G. Dotson Jr., On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38 (1973), 155–156. MR 313894, DOI 10.1090/S0002-9939-1973-0313894-9
- Sam B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488. MR 254828, DOI 10.2140/pjm.1969.30.475
- B. N. Sadovskiĭ, On a fixed point principle, Funkcional. Anal. i Priložen. 1 (1967), no. 2, 74–76 (Russian). MR 0211302 —, Limit compact and condensing operators, Russian Math. Surveys 127 (1972), 85-155.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 415-419
- MSC: Primary 54H25; Secondary 54C60
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640244-6
- MathSciNet review: 640244