Compact extensions of compactly generated nilpotent groups are pro-Lie
HTML articles powered by AMS MathViewer
- by Karl H. Hofmann, John R. Liukkonen and Michael W. Mislove
- Proc. Amer. Math. Soc. 84 (1982), 443-448
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640250-1
- PDF | Request permission
Abstract:
We show that compact extensions of compactly generated (locally compact) pro-Lie groups are pro-Lie, and that compactly generated (locally compact) nilpotent groups are pro-Lie. As a consequence compact extensions of compactly generated nilpotents are pro-Lie. We give examples indicating limitations to extending our results.References
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317–340. MR 209394, DOI 10.1090/S0002-9947-1967-0209394-9
- Siegfried Grosser and Martin Moskowitz, Representation theory of central topological groups, Trans. Amer. Math. Soc. 129 (1967), 361–390. MR 229753, DOI 10.1090/S0002-9947-1967-0229753-8
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- Philip Hall, The Edmonton notes on nilpotent groups, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1969. MR 0283083
- John R. Liukkonen and Michael W. Mislove, Fourier-Stieltjes algebras of compact extensions of nilpotent groups, J. Reine Angew. Math. 325 (1981), 210–220. MR 618554
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 443-448
- MSC: Primary 22D05
- DOI: https://doi.org/10.1090/S0002-9939-1982-0640250-1
- MathSciNet review: 640250