Noetherian PI rings not module-finite over any commutative subring
HTML articles powered by AMS MathViewer
- by J. J. Sarraillé
- Proc. Amer. Math. Soc. 84 (1982), 457-463
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643729-1
- PDF | Request permission
Abstract:
We construct a ring $R$ of $3 \times 3$ matrices over $k[x,y,z]$ which is prime, affine, Noetherian, and PI, but not finitely generated as a module nor integral over any commutative subring.References
- A. S. Amitsur, An embedding of $PI$-rings, Proc. Amer. Math. Soc. 3 (1952), 3–9. MR 45694, DOI 10.1090/S0002-9939-1952-0045694-8
- S. A. Amitsur, A noncommutative Hilbert basis theorem and subrings of matrices, Trans. Amer. Math. Soc. 149 (1970), 133–142. MR 258869, DOI 10.1090/S0002-9947-1970-0258869-5
- Emil Artin and John T. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74–77. MR 44509, DOI 10.2969/jmsj/00310074
- George M. Bergman, Some examples in PI ring theory, Israel J. Math. 18 (1974), 257–277. MR 357488, DOI 10.1007/BF02757282
- Amiram Braun, A note on Noetherian P.I. rings, Proc. Amer. Math. Soc. 83 (1981), no. 4, 670–672. MR 630034, DOI 10.1090/S0002-9939-1981-0630034-1
- Gérard Cauchon, Anneaux semi-premiers, noethériens, à identités polynômiales, Bull. Soc. Math. France 104 (1976), no. 1, 99–111. MR 407076, DOI 10.24033/bsmf.1818
- Paul Moritz Cohn, Algebra. Vol. 2, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I. MR 0530404
- Edward Formanek, Noetherian $\textrm {PI}$-rings, Comm. Algebra 1 (1974), 79–86. MR 357489, DOI 10.1080/00927877408548610
- Irving Kaplansky, “Problems in the theory of rings” revisited, Amer. Math. Monthly 77 (1970), 445–454. MR 258865, DOI 10.2307/2317376
- Jacques Lewin, On some infinitely presented associative algebras, J. Austral. Math. Soc. 16 (1973), 290–293. Collection of articles dedicated to the memory of Hanna Neumann, III. MR 0340329, DOI 10.1017/S1446788700015068
- Jacques Lewin, A matrix representation for associative algebras. I, II, Trans. Amer. Math. Soc. 188 (1974), 293–308; ibid. 188 (1974), 309–317. MR 338081, DOI 10.1090/S0002-9947-1974-0338081-5
- J. J. Sarraillé, Module finiteness of low-dimensional PI rings, Pacific J. Math. 102 (1982), no. 1, 189–208. MR 682051, DOI 10.2140/pjm.1982.102.189
- Lance W. Small, An example in $\textrm {PI}$-rings, J. Algebra 17 (1971), 434–436. MR 272823, DOI 10.1016/0021-8693(71)90025-1
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 457-463
- MSC: Primary 16A38; Secondary 16A12, 16A33
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643729-1
- MathSciNet review: 643729