The cotypeset of a torsion free abelian group of rank two
HTML articles powered by AMS MathViewer
- by C. Vinsonhaler and W. J. Wickless
- Proc. Amer. Math. Soc. 84 (1982), 467-473
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643731-X
- PDF | Request permission
Abstract:
The cotypeset (set of types of rank one factors) of a torsion free abelian group of rank two is characterized.References
- D. M. Arnold, B. O’Brien, and J. D. Reid, Quasipure injective and projective torsion-free abelian groups of finite rank, Proc. London Math. Soc. (3) 38 (1979), no. 3, 532–544. MR 532986, DOI 10.1112/plms/s3-38.3.532
- D. Arnold, C. I. Vinsonhaler, and W. J. Wickless, Quasi-pure projective and injective torsion free abelian groups of rank $2$, Rocky Mountain J. Math. 6 (1976), no. 1, 61–70. MR 444799, DOI 10.1216/RMJ-1976-6-1-61
- R. A. Beaumont and R. S. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc. 38 (1961), 41. MR 130297 R. Beaumont and R. Wisner, Rings with additive group which is a torsion-free group of rank two, Pacific J. Math. 1 (1951), 169-177.
- D. W. Dubois, Applications of analytic number theory to the study of type sets of torsionfree Abelian groups. I, Publ. Math. Debrecen 12 (1965), 59–63. MR 224711, DOI 10.5486/pmd.1965.12.1-4.08
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Ryuichi Ito, On type sets of torsion-free abelian groups of rank $2$, Proc. Amer. Math. Soc. 48 (1975), 39–42. MR 354900, DOI 10.1090/S0002-9939-1975-0354900-7
- John Koehler, Some torsion-free rank two groups, Acta Sci. Math. (Szeged) 25 (1964), 186–190. MR 169909
- John E. Koehler, The type set of a torsion-free group of finite rank, Illinois J. Math. 9 (1965), 66–86. MR 171841
- Phillip Schultz, The typeset and cotypeset of a rank $2$ abelian group, Pacific J. Math. 78 (1978), no. 2, 503–517. MR 519768
- Phillip Schultz, Torsion-free extensions of torsion-free abelian groups, J. Algebra 30 (1974), 75–91. MR 342630, DOI 10.1016/0021-8693(74)90193-8
- C. Vinsonhaler and W. Wickless, Projective classes of torsion free abelian groups, Acta Math. Acad. Sci. Hungar. 39 (1982), no. 1-3, 195–215. MR 653692, DOI 10.1007/BF01895233
- R. B. Warfield Jr., Homomorphisms and duality for torsion-free groups, Math. Z. 107 (1968), 189–200. MR 237642, DOI 10.1007/BF01110257
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 467-473
- MSC: Primary 20K15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643731-X
- MathSciNet review: 643731