Distance between normal operators
HTML articles powered by AMS MathViewer
- by V. S. Sunder
- Proc. Amer. Math. Soc. 84 (1982), 483-484
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643734-5
- PDF | Request permission
Abstract:
Lidskii and Wielandt have proved independently that if $A$ and $B$ are selfadjoint operators on an $n$-dimensional space $H$, with eigenvalues $\{ {\alpha _k}\} _{k = 1}^n$ and $\{ {\beta _k}\} _{k = 1}^n$ respectively (counting multiplicity), then, \[ \left \| {A - B} \right \| \geqslant \min \limits _{\sigma \in {S_n}} \left \| {{\text {diag}}\left ( {{\alpha _k} - {\beta _{\sigma (k)}}} \right )} \right \|\] for any unitarily invariant norm on $L(H)$. In this note an example is given to show that this result is no longer true if $A$ and $B$ are only required to be normal (even unitary). It is also shown that the above inequality holds in the operator norm, if $A$ is selfadjoint and $B$ is skew-self-adjoint.References
- V. B. Lidskiĭ, On the characteristic numbers of the sum and product of symmetric matrices, Doklady Akad. Nauk SSSR (N.S.) 75 (1950), 769–772 (Russian). MR 0039686
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
- Helmut Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106–110. MR 67842, DOI 10.1090/S0002-9939-1955-0067842-9
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 483-484
- MSC: Primary 47B15; Secondary 15A60, 47A55
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643734-5
- MathSciNet review: 643734