On certain comparison theorems for second order linear oscillation
HTML articles powered by AMS MathViewer
- by Man Kam Kwong
- Proc. Amer. Math. Soc. 84 (1982), 539-542
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643745-X
- PDF | Request permission
Abstract:
It is shown that if $(py’)’ + qy = 0$ on $[0,\infty )$ is oscillatory then $(pz’)’ + aqz = 0$ is also oscillatory for functions satisfying $a(t) \geqslant 1$ and \[ 2p(t)a’(t) - 3\int _0^t {p(s){{a’}^2}(s){a^{ - 1}}(s)ds} \] is nonincreasing.References
- Lynn Erbe, Oscillation theorems for second order linear differential equations, Pacific J. Math. 35 (1970), 337–343. MR 274858
- A. M. Fink and D. F. St. Mary, A generalized Sturm comparison theorem and oscillation coefficients, Monatsh. Math. 73 (1969), 207–212. MR 244561, DOI 10.1007/BF01300536
- Man Kam Kwong and A. Zettl, Integral inequalities and second order linear oscillation, J. Differential Equations 45 (1982), no. 1, 16–33. MR 662484, DOI 10.1016/0022-0396(82)90052-3
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 539-542
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643745-X
- MathSciNet review: 643745