THE NONHOMOGENEITY OF THE E-TREE—ANSWER TO A PROBLEM RAISED BY D. JENSEN AND A. EHRENFEUCHT

DIDIER MISERCQUE

Abstract. We prove that the ordered system of all C^1EP's, under the order "admits embedding in" is not homogeneous. This answers a problem raised in [2].

1. Introduction. We assume familiarity with [2]. L denotes the lattice of all \forall_1-sentences of Peano Arithmetic (PA) modulo PA. $\alpha, \beta, \gamma, \ldots$ denote elements of L (we often identify \forall_1-sentences with their equivalence classes). 0 and 1 denote respectively the minimum element and the maximum element of L.

By the E-tree we mean, the class of all prime filters of L under the partial ordering of reverse inclusion \subseteq. By a C^1EP is meant the set of all existential sentences (without parameters) satisfied in some model of PA. The following results are well known (see [2] and [4]).

Lemma 1.1. F is a prime filter of L iff

$$-(L \setminus F)$$ is a C^1EP.

This gives an isomorphism between the E-tree and the ordered system of all C^1EP's.

Lemma 1.2. (i) The set of the predecessors of an element of the E-tree is totally ordered.

(ii) The E-tree has a minimum element (i.e. $L \setminus \{0\}$) and each of its branches has a maximal element.

Jensen and Ehrenfeucht ask [2, p. 243] whether the E-tree is homogeneous in the sense that any pair of nonminimal, nonmaximal elements can be exchanged by an automorphism.

2. Preliminary results.

Lemma 2.1. The E-tree has an element F such that

(i) F is not maximal,

(ii) F is not minimal,

(iii) F has no immediate predecessor,

(iv) if B is any branch of the E-tree containing F, then F has an immediate successor in B.

Received by the editors January 21, 1981.

1Supported in part by an IRSIA grant. I am grateful to the referee for helpful suggestions.
Proof. Let \(\theta \) be a \(\forall_1 \)-sentence independent of PA such that \(\text{PA} + \neg \theta \) and \(\text{PA} \) have the same \(\forall_1 \)-theorems; (such a formula exists by a result of Kreisel, cf. §1 of [1]). We denote by \(E_\theta \) the class of all prime filters of \(L \) containing \(\theta \) and ordered by \(\supset \). It is easily shown that each branch of \(E_\theta \) has a maximum element. Therefore \(E_\theta \) has (at least) one maximal element \(F_\theta \). We will show that \(F_\theta \) has the required properties.

(i) Let \(I = L \setminus F_\theta \), we have \(\theta \notin I \). Denote by \(T \) the theory \(\text{PA} + \neg I + \neg \theta \). \(T \) is consistent because if \(\text{PA} + \neg I + \theta \), then

\[
\exists \varphi \in I \quad \text{PA} + \neg \varphi + \theta,
\]

and thus

\[
\text{PA} + \varphi.
\]

This is impossible because \(\text{PA} + \neg \varphi \) is consistent. Obviously, the prime filter of all \(\forall_1 \)-sentences true in any model of \(T \) is properly contained in \(F_\theta \). So \(F_\theta \) is not maximal.

(ii) If \(F_\theta = L \setminus \{0\} \), then \(E_\theta = \{L \setminus \{0\}\} \) and the only prime filter of \(L \) containing \(\theta \) is \(\forall_1(N) \). We infer that \(\text{PA} + \theta \equiv \text{PA} + (L \setminus \{0\}) \). This is impossible because \(\text{PA} + \theta \) is an R.E. theory and \(\text{PA} + (L \setminus \{0\}) \) is a \(\pi^0_1 \)-non-R.E. theory.

(iii) Suppose that \(F_\theta \) has an immediate predecessor \(F' \). Then

\[
\forall \beta \in L \setminus F_\theta \quad \text{PA} + F_\theta + \beta + F' \]

(because, if this theory is consistent, the class of all \(\forall_1 \)-sentences true in any model of \(T \) is a prime filter of \(L \) containing properly \(F_\theta \) and therefore \(F' \); if \(\text{PA} + F_\theta + \beta \) is not consistent, the result is obvious). Therefore

\[
\forall \alpha \in F' \setminus F_\theta \quad \forall \beta \in L \setminus F_\theta \quad \exists \gamma \in F_\theta \quad \text{PA} + \gamma + \beta + \alpha,
\]

or

\[
(*) \quad \text{PA} + \neg \alpha + \beta + \neg \gamma.
\]

We also have that \(F_\theta \) is a maximal element of \(E_\theta \) and therefore \(\forall \xi \in F_\theta \quad \text{PA} + (L \setminus F_\theta) + \theta + \neg \xi \) is an inconsistent theory (because, if this theory is consistent, the prime filter of all \(\forall_1 \)-sentences true in any model of this theory is an element of \(E_\theta \) properly contained in \(F_\theta \)). Therefore,

\[
(**) \quad \forall \xi \in F_\theta \quad \exists \rho \in L \setminus F_\theta \quad \text{PA} + \theta + \xi \lor \rho.
\]

Let \(\alpha \in F' \setminus F_\theta \). By a result of Solovary (cf. [1, Theorem 2.7]), we know that there is a \(\forall_1 \)-sentence \(\varphi \), independent of \(\text{PA} + \theta + \neg \alpha \), such that

(I) \(\text{PA} + \theta + \neg \alpha + \varphi \) and \(\text{PA} + \theta + \neg \alpha \) have the same \(\exists_1 \)-theorems,

(II) \(\text{PA} + \theta + \neg \alpha + \neg \varphi \) and \(\text{PA} + \theta + \neg \alpha \) have the same \(\forall_1 \)-theorems. \(\varphi \notin F_\theta \);

because, if \(\varphi \in F_\theta \) then, by (**) we have

\[
\exists \varphi' \in L \setminus F_\theta \quad \text{PA} + \theta + \varphi \lor \varphi',
\]

\[
\text{PA} + \theta + \neg \alpha + \varphi \lor \varphi',
\]

\[
\text{PA} + \theta + \neg \alpha + \neg \varphi + \varphi',
\]

\[
\text{PA} + \theta + \neg \alpha + \varphi',
\]
and
\[PA \vdash \theta \Rightarrow \alpha \lor \varphi', \]
but \(\theta \in \mathcal{F}_{\alpha}, \alpha \lor \varphi' \notin \mathcal{F}_{\alpha} \) and \(\theta \leq \alpha \lor \varphi' \). Contradiction!

If \(\varphi \in L \setminus \mathcal{F}_{\alpha} \), we have by (\(\ast \))
\[\exists \gamma \in \mathcal{F}_{\alpha} \quad PA + \neg \alpha + \varphi \vdash \neg \gamma, \]
\[PA + \theta + \neg \alpha + \varphi \vdash \neg \gamma, \]
\[PA + \theta + \neg \alpha \vdash \neg \gamma, \]
and
\[\exists \gamma \in \mathcal{F}_{\alpha} \quad PA + \theta \land \gamma \Rightarrow \alpha, \]
but \(\alpha \notin \mathcal{F}_{\alpha}, \theta \land \gamma \in \mathcal{F}_{\alpha} \) and \(\theta \land \gamma \leq \alpha \). Contradiction! \(\mathcal{F}_{\alpha} \) has therefore no immediate predecessor.

(iv) Let \(B \) be a branch of the \(\mathcal{E} \)-tree containing \(\mathcal{F}_{\alpha} \). \(\mathcal{F}_{\alpha} \) is a maximal element of \(\mathcal{E}_{\alpha} \), and therefore \(\mathcal{F}_{\alpha} \) is the greatest element of \(B \) containing \(\theta \). Let \(A = \{ F \in B \mid \theta \notin F \} \).

It is straightforward to check that \(F' = \bigcup_{F \in A} F \) is the lowest element of \(B \) which does not contain \(\theta \). \(F' \) is, of course, an immediate successor of \(\mathcal{F}_{\alpha} \).

Lemma 2.2. If \(F \) is any maximal element of the \(\mathcal{E} \)-tree, then \(F \) has no immediate predecessor.

Proof. We use the same kind of argument as in the proof of Lemma 2.1(iii). Let \(\theta = 1 \). (We delete, of course, the requirement “\(PA + \neg \theta \) and \(PA \) have the same \(\forall _\theta \)-theorems” which is not used in the proof of Lemma 2.1(iii).) Now \(\mathcal{F}_{\alpha} \) becomes any maximal element of the \(\mathcal{E} \)-tree.

3. The main result.

Theorem 3.1. The \(\mathcal{E} \)-tree is not homogeneous.

Proof. This is an immediate consequence of Lemmas 2.1 and 2.2, for, in the notation of Lemma 2.1, \(\mathcal{F}_{\alpha} \) and its immediate successor \(F' \) are neither minimal nor maximal and yet cannot be exchanged by an automorphism of the \(\mathcal{E} \)-tree.

References

Department of Mathematics, University of Brussels, 1050 Brussels, Belgium