Inner points and breadth in certain compact semilattices
HTML articles powered by AMS MathViewer
- by D. R. Brown and J. W. Stepp
- Proc. Amer. Math. Soc. 84 (1982), 581-587
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643754-0
- PDF | Request permission
Abstract:
A point $x \in X$ is inner if there exists an open set $U$ containing $x$ such that for each open set $V$ with $x \in V \subseteq U$, the inclusion homomorphism ${i^* }:$: ${H^*}(X,X \setminus V) \to {H^*}(X,X \setminus U)$ is nontrivial. In this note it is proved that, if $X$ is a compact, chainwise connected topological semilattice of codimension $n$, and $x$ is a point of breadth $n + 1$, then $x$ is an inner point.References
- Lee W. Anderson, On the breadth and co-dimension of a topological lattice, Pacific J. Math. 9 (1959), 327–333. MR 105465
- Kirby A. Baker and Albert R. Stralka, Compact, distributive lattices of finite breadth, Pacific J. Math. 34 (1970), 311–320. MR 282895
- Dennison R. Brown, Topological semilattices on the two-cell, Pacific J. Math. 15 (1965), 35–46. MR 176453
- Haskell Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. J. 21 (1954), 209–224. MR 66637
- Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, and Dana S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin-New York, 1980. MR 614752
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math. 9 (1959), 723–728. MR 108553
- Jimmie D. Lawson, The relation of breadth and co-dimension in topological semilattices, Duke Math. J. 37 (1970), 207–212. MR 258687
- J. D. Lawson, The relation of breadth and codimension in topological semilattices. II, Duke Math. J. 38 (1971), 555–559. MR 282891
- Jimmie D. Lawson, A generalized version of the Vietoris-Begle theorem, Fund. Math. 65 (1969), 65–72. MR 248805, DOI 10.4064/fm-65-1-65-72
- J. Lason and B. Madison, Peripheral and inner points, Fund. Math. 69 (1970), 253–266. MR 275418, DOI 10.4064/fm-69-3-253-266
- J. Lawson and B. Madison, Peripherality in semigroups, Semigroup Forum 1 (1970), no. 2, 128–142. MR 265504, DOI 10.1007/BF02573027
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- J. W. Stepp, Semilattices which are embeddable in a product of $\textrm {min}$ intervals, Proc. Amer. Math. Soc. 28 (1971), 81–86. MR 276147, DOI 10.1090/S0002-9939-1971-0276147-1
- A. D. Wallace, Acyclicity of compact connected semigroups, Fund. Math. 50 (1961/62), 99–105. MR 132533, DOI 10.4064/fm-50-2-99-105
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 84 (1982), 581-587
- MSC: Primary 22A26; Secondary 22A15, 54H12
- DOI: https://doi.org/10.1090/S0002-9939-1982-0643754-0
- MathSciNet review: 643754