Weighted norm inequalities for the Hardy-Littlewood maximal function
HTML articles powered by AMS MathViewer
- by Wo Sang Young
- Proc. Amer. Math. Soc. 85 (1982), 24-26
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647890-4
- PDF | Request permission
Abstract:
A characterization is obtained for weight functions $\upsilon$ for which the Hardy-Littlewood maximal operator is bounded from ${L^p}({{\mathbf {R}}^n},wdx)$ to ${L^p}({{\mathbf {R}}^n},\upsilon dx)$ for some nontrivial $w$.References
- L. Carleson and P. W. Jones, Weighted norm inequalities and a theorem of Koosis, Mittag-Leffler Rep. No. 2, 1981.
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Benjamin Muckenhoupt, Weighted norm inequalities for classical operators, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR 545240
- José L. Rubio de Francia, Boundedness of maximal functions and singular integrals in weighted $L^{p}$ spaces, Proc. Amer. Math. Soc. 83 (1981), no. 4, 673–679. MR 630035, DOI 10.1090/S0002-9939-1981-0630035-3
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 85 (1982), 24-26
- MSC: Primary 42B25; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1982-0647890-4
- MathSciNet review: 647890